
An Overview of a Compiler

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Compiler Overview

Outline of the Lecture

About the course
Why should we study compiler design?
Compiler overview with block diagrams

Y.N. Srikant Compiler Overview

About the Course

A detailed look at the internals of a compiler
Does not assume any background but is intensive
Doing programming assignments and solving theoretical
problems are both essential
A compiler is an excellent example of theory translated into
practice in a remarkable way

Y.N. Srikant Compiler Overview

Why Should We Study Compiler Design?

Compilers are everywhere!
Many applications for compiler technology

Parsers for HTML in web browser
Interpreters for javascript/flash
Machine code generation for high level languages
Software testing
Program optimization
Malicious code detection
Design of new computer architectures

Compiler-in-the-loop hardware development

Hardware synthesis: VHDL to RTL translation
Compiled simulation

Used to simulate designs written in VHDL
No interpretation of design, hence faster

Y.N. Srikant Compiler Overview

About the Complexity of Compiler Technology

A compiler is possibly the most complex system software
and writing it is a substantial exercise in software
engineering
The complexity arises from the fact that it is required to
map a programmer’s requirements (in a HLL program) to
architectural details
It uses algorithms and techniques from a very large
number of areas in computer science
Translates intricate theory into practice - enables tool
building

Y.N. Srikant Compiler Overview

About the Nature of Compiler Algorithms

Draws results from mathematical logic, lattice theory, linear
algebra, probability, etc.

type checking, static analysis, dependence analysis and
loop parallelization, cache analysis, etc.

Makes practical application of
Greedy algorithms - register allocation
Heuristic search - list scheduling
Graph algorithms - dead code elimination, register
allocation
Dynamic programming - instruction selection
Optimization techniques - instruction scheduling
Finite automata - lexical analysis
Pushdown automata - parsing
Fixed point algorithms - data-flow analysis
Complex data structures - symbol tables, parse trees, data
dependence graphs
Computer architecture - machine code generation

Y.N. Srikant Compiler Overview

Other Uses of Scanning and Parsing Techniques

Assembler implementation
Online text searching (GREP, AWK) and word processing
Website filtering
Command language interpreters
Scripting language interpretation (Unix shell, Perl, Python)
XML parsing and document tree construction
Database query interpreters

Y.N. Srikant Compiler Overview

Other Uses of Program Analysis Techniques

Converting a sequential loop to a parallel loop
Program analysis to determine if programs are data-race
free
Profiling programs to determine busy regions
Program slicing
Data-flow analysis approach to software testing

Uncovering errors along all paths
Dereferencing null pointers
Buffer overflows and memory leaks

Worst Case Execution Time (WCET) estimation and
energy analysis

Y.N. Srikant Compiler Overview

Language Processing System

Y.N. Srikant Compiler Overview

Compiler Overview

Y.N. Srikant Compiler Overview

Compilers and Interpreters

Compilers generate machine code, whereas interpreters
interpret intermediate code
Interpreters are easier to write and can provide better error
messages (symbol table is still available)
Interpreters are at least 5 times slower than machine code
generated by compilers
Interpreters also require much more memory than machine
code generated by compilers
Examples: Perl, Python, Unix Shell, Java, BASIC, LISP

Y.N. Srikant Compiler Overview

Translation Overview - Lexical Analysis

Y.N. Srikant Compiler Overview

Lexical Analysis

LA can be generated automatically from regular expression
specifications

LEX and Flex are two such tools

LA is a deterministic finite state automaton
Why is LA separate from parsing?

Simplification of design - software engineering reason
I/O issues are limited LA alone
LA based on finite automata are more efficient to implement
than pushdown automata used for parsing (due to stack)

Y.N. Srikant Compiler Overview

Translation Overview - Syntax Analysis

Y.N. Srikant Compiler Overview

Parsing or Syntax Analysis

Syntax analyzers (parsers) can be generated automatically
from several variants of context-free grammar
specifications

LL(1), and LALR(1) are the most popular ones
ANTLR (for LL(1)), YACC and Bison (for LALR(1)) are such
tools

Parsers are deterministic push-down automata
Parsers cannot handle context-sensitive features of
programming languages; e.g.,

Variables are declared before use
Types match on both sides of assignments
Parameter types and number match in declaration and use

Y.N. Srikant Compiler Overview

Translation Overview - Semantic Analysis

Y.N. Srikant Compiler Overview

Semantic Analysis

Semantic consistency that cannot be handled at the
parsing stage is handled here
Type checking of various programming language
constructs is one of the most important tasks
Stores type information in the symbol table or the syntax
tree

Types of variables, function parameters, array dimensions,
etc.
Used not only for semantic validation but also for
subsequent phases of compilation

Static semantics of programming languages can be
specified using attribute grammars

Y.N. Srikant Compiler Overview

Translation Overview - Intermediate Code Generation

Y.N. Srikant Compiler Overview

Intermediate Code Generation

While generating machine code directly from source code
is possible, it entails two problems

With m languages and n target machines, we need to write
m × n compilers
The code optimizer which is one of the largest and
very-difficult-to-write components of any compiler cannot be
reused

By converting source code to an intermediate code, a
machine-independent code optimizer may be written
Intermediate code must be easy to produce and easy to
translate to machine code

A sort of universal assembly language
Should not contain any machine-specific parameters
(registers, addresses, etc.)

Y.N. Srikant Compiler Overview

Different Types of Intermediate Code

The type of intermediate code deployed is based on the
application
Quadruples, triples, indirect triples, abstract syntax trees
are the classical forms used for machine-independent
optimizations and machine code generation
Static Single Assignment form (SSA) is a recent form and
enables more effective optimizations

Conditional constant propagation and global value
numbering are more effective on SSA

Program Dependence Graph (PDG) is useful in automatic
parallelization, instruction scheduling, and software
pipelining

Y.N. Srikant Compiler Overview

Translation Overview - Code Optimization

Y.N. Srikant Compiler Overview

Machine-independent Code Optimization

Intermediate code generation process introduces many
inefficiencies

Extra copies of variables, using variables instead of
constants, repeated evaluation of expressions, etc.

Code optimization removes such inefficiencies and
improves code
Improvement may be time, space, or power consumption
It changes the structure of programs, sometimes of beyond
recognition

Inlines functions, unrolls loops, eliminates some
programmer-defined variables, etc.

Code optimization consists of a bunch of heuristics and
percentage of improvement depends on programs (may be
zero also)

Y.N. Srikant Compiler Overview

Examples of Machine-Independant Optimizations

Common sub-expression elimination
Copy propagation
Loop invariant code motion
Partial redundancy elimination
Induction variable elimination and strength reduction
Code opimization needs information about the program

which expressions are being recomputed in a function?
which definitions reach a point?

All such information is gathered through data-flow analysis

Y.N. Srikant Compiler Overview

Translation Overview - Code Generation

Y.N. Srikant Compiler Overview

Code Generation

Converts intermediate code to machine code
Each intermediate code instruction may result in many
machine instructions or vice-cersa
Must handle all aspects of machine architecture

Registers, pipelining, cache, multiple function units, etc.
Generating efficient code is an NP-complete problem

Tree pattern matching-based strategies are among the best
Needs tree intermediate code

Storage allocation decisions are made here
Register allocation and assignment are the most important
problems

Y.N. Srikant Compiler Overview

Machine-Dependent Optimizations

Peephole optimizations
Analyze sequence of instructions in a small window
(peephole) and using preset patterns, replace them with a
more efficient sequence
Redundant instruction elimination
e.g., replace the sequence [LD A,R1][ST R1,A] by [LD
A,R1]
Eliminate “jump to jump” instructions
Use machine idioms (use INC instead of LD and ADD)

Instruction scheduling (reordering) to eliminate pipeline
interlocks and to increase parallelism
Trace scheduling to increase the size of basic blocks and
increase parallelism
Software pipelining to increase parallelism in loops

Y.N. Srikant Compiler Overview

Lexical Analysis - Part 1

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Lexical Analysis - Part 1

Outline of the Lecture

What is lexical analysis?
Why should LA be separated from syntax analysis?
Tokens, patterns, and lexemes
Difficulties in lexical analysis
Recognition of tokens - finite automata and transition
diagrams
Specification of tokens - regular expressions and regular
definitions
LEX - A Lexical Analyzer Generator

Y.N. Srikant Lexical Analysis - Part 1

Compiler Overview

Y.N. Srikant Lexical Analysis - Part 1

What is Lexical Analysis?

The input is a high level language program, such as a ’C’
program in the form of a sequence of characters
The output is a sequence of tokens that is sent to the
parser for syntax analysis
Strips off blanks, tabs, newlines, and comments from the
source program
Keeps track of line numbers and associates error
messages from various parts of a compiler with line
numbers
Performs some preprocessor functions such as #define
and #include in ’C’

Y.N. Srikant Lexical Analysis - Part 1

Separation of Lexical Analysis from Syntax Analysis

Simplification of design - software engineering reason
I/O issues are limited LA alone
More compact and faster parser

Comments, blanks, etc., need not be handled by the parser
A parser is more complicated than a lexical analyzer and
shrinking the grammar makes the parser faster

No rules for numbers, names, comments, etc., are needed in
the parser

LA based on finite automata are more efficient to
implement than pushdown automata used for parsing (due
to stack)

Y.N. Srikant Lexical Analysis - Part 1

Tokens, Patterns, and Lexemes

Running example: float abs_zero_Kelvin = -273;
Token (also called word)

A string of characters which logically belong together
float, identifier, equal, minus, intnum, semicolon
Tokens are treated as terminal symbols of the grammar
specifying the source language

Pattern
The set of strings for which the same token is produced
The pattern is said to match each string in the set
float, l(l+d+_)*, =, -, d+, ;

Lexeme
The sequence of characters matched by a pattern to form
the corresponding token
“float”, “abs_zero_Kelvin”, “=”, “-”, “273”, “;”

Y.N. Srikant Lexical Analysis - Part 1

Tokens in Programming Languages

Keywords, operators, identifiers (names), constants, literal
strings, punctuation symbols such as parentheses,
brackets, commas, semicolons, and colons, etc.
A unique integer representing the token is passed by LA to
the parser
Attributes for tokens (apart from the integer representing
the token)

identifier: the lexeme of the token, or a pointer into the
symbol table where the lexeme is stored by the LA
intnum: the value of the integer (similarly for floatnum, etc.)
string: the string itself
The exact set of attributes are dependent on the compiler
designer

Y.N. Srikant Lexical Analysis - Part 1

Difficulties in Lexical Analysis

Certain languages do not have any reserved words, e.g.,
while, do, if, else, etc., are reserved in ’C’, but not in PL/1
In FORTRAN, some keywords are context-dependent

In the statement, DO 10 I = 10.86, DO10I is an identifier,
and DO is not a keyword
But in the statement, DO 10 I = 10, 86, DO is a keyword
Such features require substantial look ahead for resolution

Blanks are not significant in FORTRAN and can appear in
the midst of identifiers, but not so in ’C’
LA cannot catch any significant errors except for simple
errors such as, illegal symbols, etc.
In such cases, LA skips characters in the input until a
well-formed token is found

Y.N. Srikant Lexical Analysis - Part 1

Specification and Recognition of Tokens

Regular definitions, a mechansm based on regular
expressions are very popular for specification of tokens

Has been implemented in the lexical analyzer generator
tool, LEX
We study regular expressions first, and then, token
specification using LEX

Transition diagrams, a variant of finite state automata, are
used to implement regular definitions and to recognize
tokens

Transition diagrams are usually used to model LA before
translating them to programs by hand
LEX automatically generates optimized FSA from regular
definitions
We study FSA and their generation from regular
expressions in order to understand transition diagrams and
LEX

Y.N. Srikant Lexical Analysis - Part 1

Languages

Symbol: An abstract entity, not defined
Examples: letters and digits

String: A finite sequence of juxtaposed symbols
abcb, caba are strings over the symbols a,b, and c
|w | is the length of the string w, and is the #symbols in it
ε is the empty string and is of length 0

Alphabet: A finite set of symbols
Language: A set of strings of symbols from some alphabet

Φ and {ε} are languages
The set of palindromes over {0,1} is an infinite language
The set of strings, {01, 10, 111} over {0,1} is a finite
language

If Σ is an alphabet, Σ∗ is the set of all strings over Σ

Y.N. Srikant Lexical Analysis - Part 1

Language Representations

Each subset of Σ∗ is a language
This set of languages over Σ∗ is uncountably infinite
Each language must have by a finite representation

A finite representation can be encoded by a finite string
Thus, each string of Σ∗ can be thought of as representing
some language over the alphabet Σ
Σ∗ is countably infinite
Hence, there are more languages than language
representations

Regular expressions (type-3 or regular languages),
context-free grammars (type-2 or context-free
languages), context-sensitive grammars (type-1 or
context-sensitive languages), and type-0 grammars are
finite representations of respective languages
RL << CFL << CSL << type-0 languages

Y.N. Srikant Lexical Analysis - Part 1

Examples of Languages

Let Σ = {a,b, c}
L1 = {ambn|m,n ≥ 0} is regular
L2 = {anbn|n ≥ 0} is context-free but not regular
L3 = {anbncn|n ≥ 0} is context-sensitive but neither
regular nor context-free
Showing a language that is type-0, but none of CSL, CFL,
or RL is very intricate and is omitted

Y.N. Srikant Lexical Analysis - Part 1

Automata

Automata are machines that accept languages
Finite State Automata accept RLs (corresponding to REs)
Pushdown Automata accept CFLs (corresponding to CFGs)
Linear Bounded Automata accept CSLs (corresponding to
CSGs)
Turing Machines accept type-0 languages (corresponding
to type-0 grammars)

Applications of Automata
Switching circuit design
Lexical analyzer in a compiler
String processing (grep, awk), etc.
State charts used in object-oriented design
Modelling control applications, e.g., elevator operation
Parsers of all types
Compilers

Y.N. Srikant Lexical Analysis - Part 1

Finite State Automaton

An FSA is an acceptor or recognizer of regular languages
An FSA is a 5-tuple, (Q,Σ, δ,q0,F), where

Q is a finite set of states
Σ is the input alphabet
δ is the transition function, δ : Q × Σ→ Q
That is, δ(q,a) is a state for each state q and input symbol a
q0 is the start state
F is the set of final or accepting states

In one move from some state q, an FSA reads an input
symbol, changes the state based on δ, and gets ready to
read the next input symbol
An FSA accepts its input string, if starting from q0, it
consumes the entire input string, and reaches a final state
If the last state reached is not a final state, then the input
string is rejected

Y.N. Srikant Lexical Analysis - Part 1

FSA Example - 1

Y.N. Srikant Lexical Analysis - Part 1

FSA Example -1 (Contd.)

Q = {q0,q1,q2,q3}
Σ = {a,b, c}
q0 is the start state and F = {q0,q2}
The transition function δ is defined by the table below

state symbol
a b c

q0 q1 q3 q3
q1 q1 q1 q2
q2 q3 q3 q3
q3 q3 q3 q3

The accepted language is the set of all strings beginning with
an ’a’ and ending with a ’c’ (ε is also accepted)

Y.N. Srikant Lexical Analysis - Part 1

FSA Example - 2

Q = {q0,q1,q2,q3},q0 is the start state
F = {q0}, δ is as in the figure
Language accepted is the set of all strings of 0’s and 1’s, in
which the no. of 0’s and the no. of 1’s are even numbers

Y.N. Srikant Lexical Analysis - Part 1

Regular Languages

The language accepted by an FSA is the set of all strings
accepted by it, i.e., δ(q0, x)εF
This is a regular language or a regular set
Later we will define regular expressions and regular
grammars which are generators of regular languages
It can be shown that for every regular expression, an FSA
can be constructed and vice-versa

Y.N. Srikant Lexical Analysis - Part 1

Nondeterministic FSA

NFAs are FSA which allow 0, 1, or more transitions from a
state on a given input symbol
An NFA is a 5-tuple as before, but the transition function δ
is different
δ(q,a) = the set of all states p, such that there is a
transition labelled a from q to p
δ : Q × Σ→ 2Q

A string is accepted by an NFA if there exists a sequence
of transitions corresponding to the string, that leads from
the start state to some final state
Every NFA can be converted to an equivalent deterministic
FA (DFA), that accepts the same language as the NFA

Y.N. Srikant Lexical Analysis - Part 1

Nondeterministic FSA Example - 1

Y.N. Srikant Lexical Analysis - Part 1

Lexical Analysis - Part 2

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Lexical Analysis - Part 2

Outline of the Lecture

What is lexical analysis? (covered in part 1)
Why should LA be separated from syntax analysis?
(covered in part 1)
Tokens, patterns, and lexemes (covered in part 1)
Difficulties in lexical analysis (covered in part 1)
Recognition of tokens - finite automata and transition
diagrams
Specification of tokens - regular expressions and regular
definitions
LEX - A Lexical Analyzer Generator

Y.N. Srikant Lexical Analysis - Part 2

Nondeterministic FSA

NFAs are FSA which allow 0, 1, or more transitions from a
state on a given input symbol
An NFA is a 5-tuple as before, but the transition function δ
is different
δ(q,a) = the set of all states p, such that there is a
transition labelled a from q to p
δ : Q × Σ→ 2Q

A string is accepted by an NFA if there exists a sequence
of transitions corresponding to the string, that leads from
the start state to some final state
Every NFA can be converted to an equivalent deterministic
FA (DFA), that accepts the same language as the NFA

Y.N. Srikant Lexical Analysis - Part 2

Nondeterministic FSA Example - 1

Y.N. Srikant Lexical Analysis - Part 2

An NFA and an Equivalent DFA

Y.N. Srikant Lexical Analysis - Part 2

Example of NFA to DFA conversion

The start state of the DFA would correspond to the set
{q0} and will be represented by [q0]
Starting from δ([q0],a), the new states of the DFA are
constructed on demand
Each subset of NFA states is a possible DFA state
All the states of the DFA containing some final state as a
member would be final states of the DFA
For the NFA presented before (whose equivalent DFA was
also presented)

δ[q0],a) = [q0,q1], δ([q0],b) = φ
δ([q0,q1],a) = [q0,q1], δ([q0,q1],b) = [q1,q2]
δ(φ,a) = φ, δ(φ,b) = φ
δ([q1,q2],a) = φ, δ([q1,q2],b) = [q1,q2]
[q1,q2] is the final state

In the worst case, the converted DFA may have 2n states,
where n is the no. of states of the NFA

Y.N. Srikant Lexical Analysis - Part 2

NFA with ε-Moves

ε-NFA is equivalent to NFA in power

Y.N. Srikant Lexical Analysis - Part 2

Regular Expressions

Let Σ be an alphabet. The REs over Σ and the languages they
denote (or generate) are defined as below

1 φ is an RE. L(φ) = φ

2 ε is an RE. L(ε) = {ε}
3 For each a ∈ Σ, a is an RE. L(a) = {a}
4 If r and s are REs denoting the languages R and S,

respectively
(rs) is an RE, L(rs) = R.S = {xy | x ∈ R ∧ y ∈ S}
(r + s) is an RE, L(r + s) = R ∪ S

(r∗) is an RE, L(r∗) = R∗ =
∞⋃
i=0

R i

(L∗ is called the Kleene closure or closure of L)

Y.N. Srikant Lexical Analysis - Part 2

Examples of Regular Expressions

1 L = set of all strings of 0’s and 1’s
r = (0 + 1)∗

How to generate the string 101 ?
(0 + 1)∗ ⇒4 (0 + 1)(0 + 1)(0 + 1)ε⇒4 101

2 L = set of all strings of 0’s and 1’s, with at least two
consecutive 0’s
r = (0 + 1)∗00(0 + 1)∗

3 L = {w ∈ {0,1}∗ | w has two or three occurrences of 1, the
first and second of which are not consecutive}
r = 0∗10∗010∗(10∗ + ε)

4 r = (1 + 10)∗

L = set of all strings of 0’s and 1’s, beginning with 1 and not
having two consecutive 0’s

5 r = (0 + 1)∗011
L = set of all strings of 0’s and 1’s ending in 011

Y.N. Srikant Lexical Analysis - Part 2

Examples of Regular Expressions

6 r = c∗(a + bc∗)∗

L = set of all strings over {a,b,c} that do not have the
substring ac

7 L = {w | w ∈ {a,b}∗ ∧ w ends with a}
r = (a + b)∗a

8 L = {if, then, else, while, do, begin, end}
r = if + then + else + while + do + begin + end

Y.N. Srikant Lexical Analysis - Part 2

Examples of Regular Definitions

A regular definition is a sequence of "equations" of the form
d1 = r1; d2 = r2; ... ; dn = rn, where each di is a distinct name,
and each ri is a regular expression over the symbols
Σ ∪ {d1,d2, ...,di−1}

1 identifiers and integers
letter = a + b + c + d + e; digit = 0 + 1 + 2 + 3 + 4;
identifier = letter(letter + digit)∗; number = digit digit∗

2 unsigned numbers
digit = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9;
digits = digit digit∗;
optional_fraction = ḋ igits + ε;
optional_exponent = (E(+| − |ε)digits) + ε
unsigned_number =
digits optional_fraction optional_exponent

Y.N. Srikant Lexical Analysis - Part 2

Equivalence of REs and FSA

Let r be an RE. Then there exists an NFA with ε-transitions
that accepts L(r). The proof is by construction.
If L is accepted by a DFA, then L is generated by an RE.
The proof is tedious.

Y.N. Srikant Lexical Analysis - Part 2

Construction of FSA from RE - r = φ, ε, or a

Y.N. Srikant Lexical Analysis - Part 2

FSA for r = r1 + r2

Y.N. Srikant Lexical Analysis - Part 2

FSA for r = r1 r2

Y.N. Srikant Lexical Analysis - Part 2

FSA for r = r1*

Y.N. Srikant Lexical Analysis - Part 2

NFA Construction for r = (a+b)*c

Y.N. Srikant Lexical Analysis - Part 2

Transition Diagrams

Transition diagrams are generalized DFAs with the
following differences

Edges may be labelled by a symbol, a set of symbols, or a
regular definition
Some accepting states may be indicated as retracting
states, indicating that the lexeme does not include the
symbol that brought us to the accepting state
Each accepting state has an action attached to it, which is
executed when that state is reached. Typically, such an
action returns a token and its attribute value

Transition diagrams are not meant for machine translation
but only for manual translation

Y.N. Srikant Lexical Analysis - Part 2

Y.N. Srikant Lexical Analysis - Part 2

Y.N. Srikant Lexical Analysis - Part 2

Y.N. Srikant Lexical Analysis - Part 2

Y.N. Srikant Lexical Analysis - Part 2

Y.N. Srikant Lexical Analysis - Part 2

Lexical Analyzer Implementation from Trans. Diagrams

TOKEN gettoken() {
TOKEN mytoken; char c;
while(1) { switch (state) {
/* recognize reserved words and identifiers */
case 0: c = nextchar(); if (letter(c))

state = 1; else state = failure();
break;

case 1: c = nextchar();
if (letter(c) || digit(c))
state = 1; else state = 2; break;

case 2: retract(1);
mytoken.token = search_token();
if (mytoken.token == IDENTIFIER)
mytoken.value = get_id_string();
return(mytoken);

Y.N. Srikant Lexical Analysis - Part 2

Y.N. Srikant Lexical Analysis - Part 2

Lexical Analyzer Implementation from Trans. Diagrams

/* recognize hexa and octal constants */
case 3: c = nextchar();

if (c == ’0’) state = 4; break;
else state = failure();

case 4: c = nextchar();
if ((c == ’x’) || (c == ’X’))
state = 5; else if (digitoct(c))
state = 9; else state = failure();
break;

case 5: c = nextchar(); if (digithex(c))
state = 6; else state = failure();
break;

Y.N. Srikant Lexical Analysis - Part 2

Y.N. Srikant Lexical Analysis - Part 2

Lexical Analyzer Implementation from Trans. Diagrams

case 6: c = nextchar(); if (digithex(c))
state = 6; else if ((c == ’u’)||
(c == ’U’)||(c == ’l’)||
(c == ’L’)) state = 8;
else state = 7; break;

case 7: retract(1);
/* fall through to case 8, to save coding */

case 8: mytoken.token = INT_CONST;
mytoken.value = eval_hex_num();
return(mytoken);

case 9: c = nextchar(); if (digitoct(c))
state = 9; else if ((c == ’u’)||
(c == ’U’)||(c == ’l’)||(c == ’L’))
state = 11; else state = 10; break;

Y.N. Srikant Lexical Analysis - Part 2

Lexical Analyzer Implementation from Trans. Diagrams

case 10: retract(1);
/* fall through to case 11, to save coding */

case 11: mytoken.token = INT_CONST;
mytoken.value = eval_oct_num();
return(mytoken);

Y.N. Srikant Lexical Analysis - Part 2

Y.N. Srikant Lexical Analysis - Part 2

Lexical Analyzer Implementation from Trans. Diagrams

/* recognize integer constants */
case 12: c = nextchar(); if (digit(c))

state = 13; else state = failure();
case 13: c = nextchar(); if (digit(c))

state = 13;else if ((c == ’u’)||
(c == ’U’)||(c == ’l’)||(c == ’L’))
state = 15; else state = 14; break;

case 14: retract(1);
/* fall through to case 15, to save coding */

case 15: mytoken.token = INT_CONST;
mytoken.value = eval_int_num();
return(mytoken);

default: recover();
}

}
}

Y.N. Srikant Lexical Analysis - Part 2

Lexical Analysis - Part 3

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Lexical Analysis - Part 3

Outline of the Lecture

What is lexical analysis? (covered in part 1)
Why should LA be separated from syntax analysis?
(covered in part 1)
Tokens, patterns, and lexemes (covered in part 1)
Difficulties in lexical analysis (covered in part 1)
Recognition of tokens - finite automata and transition
diagrams (covered in part 2)
Specification of tokens - regular expressions and regular
definitions (covered in part 2)
LEX - A Lexical Analyzer Generator

Y.N. Srikant Lexical Analysis - Part 3

Transition Diagrams

Transition diagrams are generalized DFAs with the
following differences

Edges may be labelled by a symbol, a set of symbols, or a
regular definition
Some accepting states may be indicated as retracting
states, indicating that the lexeme does not include the
symbol that brought us to the accepting state
Each accepting state has an action attached to it, which is
executed when that state is reached. Typically, such an
action returns a token and its attribute value

Transition diagrams are not meant for machine translation
but only for manual translation

Y.N. Srikant Lexical Analysis - Part 3

Lexical Analyzer Implementation from Trans. Diagrams

TOKEN gettoken() {
TOKEN mytoken; char c;
while(1) { switch (state) {
/* recognize reserved words and identifiers */
case 0: c = nextchar(); if (letter(c))

state = 1; else state = failure();
break;

case 1: c = nextchar();
if (letter(c) || digit(c))
state = 1; else state = 2; break;

case 2: retract(1);
mytoken.token = search_token();
if (mytoken.token == IDENTIFIER)
mytoken.value = get_id_string();
return(mytoken);

Y.N. Srikant Lexical Analysis - Part 3

Y.N. Srikant Lexical Analysis - Part 3

Lexical Analyzer Implementation from Trans. Diagrams

/* recognize hexa and octal constants */
case 3: c = nextchar();

if (c == ’0’) state = 4; break;
else state = failure();

case 4: c = nextchar();
if ((c == ’x’) || (c == ’X’))
state = 5; else if (digitoct(c))
state = 9; else state = failure();
break;

case 5: c = nextchar(); if (digithex(c))
state = 6; else state = failure();
break;

Y.N. Srikant Lexical Analysis - Part 3

Y.N. Srikant Lexical Analysis - Part 3

Lexical Analyzer Implementation from Trans. Diagrams

case 6: c = nextchar(); if (digithex(c))
state = 6; else if ((c == ’u’)||
(c == ’U’)||(c == ’l’)||
(c == ’L’)) state = 8;
else state = 7; break;

case 7: retract(1);
/* fall through to case 8, to save coding */

case 8: mytoken.token = INT_CONST;
mytoken.value = eval_hex_num();
return(mytoken);

case 9: c = nextchar(); if (digitoct(c))
state = 9; else if ((c == ’u’)||
(c == ’U’)||(c == ’l’)||(c == ’L’))
state = 11; else state = 10; break;

Y.N. Srikant Lexical Analysis - Part 3

Lexical Analyzer Implementation from Trans. Diagrams

case 10: retract(1);
/* fall through to case 11, to save coding */

case 11: mytoken.token = INT_CONST;
mytoken.value = eval_oct_num();
return(mytoken);

Y.N. Srikant Lexical Analysis - Part 3

Y.N. Srikant Lexical Analysis - Part 3

Lexical Analyzer Implementation from Trans. Diagrams

/* recognize integer constants */
case 12: c = nextchar(); if (digit(c))

state = 13; else state = failure();
case 13: c = nextchar(); if (digit(c))

state = 13;else if ((c == ’u’)||
(c == ’U’)||(c == ’l’)||(c == ’L’))
state = 15; else state = 14; break;

case 14: retract(1);
/* fall through to case 15, to save coding */

case 15: mytoken.token = INT_CONST;
mytoken.value = eval_int_num();
return(mytoken);

default: recover();
}

}
}

Y.N. Srikant Lexical Analysis - Part 3

Combining Transition Diagrams to form LA

Different transition diagrams must be combined
appropriately to yield an LA

Combining TDs is not trivial
It is possible to try different transition diagrams one after
another
For example, TDs for reserved words, constants, identifiers,
and operators could be tried in that order
However, this does not use the “longest match"
characteristic (thenext would be an identifier, and not
reserved word then followed by identifier ext)
To find the longest match, all TDs must be tried and the
longest match must be used

Using LEX to generate a lexical analyzer makes it easy for
the compiler writer

Y.N. Srikant Lexical Analysis - Part 3

LEX - A Lexical Analyzer Generator

LEX has a language for describing regular expressions
It generates a pattern matcher for the regular expression
specifications provided to it as input
General structure of a LEX program
{definitions} – Optional
%%
{rules} – Essential
%%
{user subroutines} – Essential
Commands to create an LA

lex ex.l – creates a C-program lex.yy.c
gcc -o ex.o lex.yy.c – produces ex.o
ex.o is a lexical analyzer, that carves tokens from its input

Y.N. Srikant Lexical Analysis - Part 3

LEX Example

/* LEX specification for the Example */
%%
[A-Z]+ {ECHO; printf("\n");}
.|\n ;
%%
yywrap(){}
main(){yylex();}

/* Input */ /* Output */
wewevWEUFWIGhHkkH WEUFWIG
sdcwehSDWEhTkFLksewT H

H
SDWE
T
FL
T

Y.N. Srikant Lexical Analysis - Part 3

Definitions Section

Definitions Section contains definitions and included code
Definitions are like macros and have the following form:
name translation

digit [0-9]
number {digit} {digit}*

Included code is all code included between %{ and %}

%{
float number; int count=0;

%}

Y.N. Srikant Lexical Analysis - Part 3

Rules Section

Contains patterns and C-code
A line starting with white space or material enclosed in %{
and %} is C-code
A line starting with anything else is a pattern line
Pattern lines contain a pattern followed by some white
space and C-code
{pattern} {action (C − code)}
C-code lines are copied verbatim to the the generated
C-file
Patterns are translated into NFA which are then converted
into DFA, optimized, and stored in the form of a table and a
driver routine
The action associated with a pattern is executed when the
DFA recognizes a string corresponding to that pattern and
reaches a final state

Y.N. Srikant Lexical Analysis - Part 3

Strings and Operators

Examples of strings: integer a57d hello
Operators:
" \ [] ^ - ? . * + | () $ {} % <>

\ can be used as an escape character as in C
Character classes: enclosed in [and]
Only \, -, and ^ are special inside []. All other operators
are irrelevant inside []
Examples:

[-+][0-9]+ ---> (-|+)(0|1|2|3|4|5|6|7|8|9)+
[a-d][0-4][A-C] ---> a|b|c|d|0|1|2|3|4|A|B|C
[^abc] ---> all char except a,b, or c,

including special and control char
[+\-][0-5]+ ---> (+|-)(0|1|2|3|4|5)+
[^a-zA-Z] ---> all char which are not letters

Y.N. Srikant Lexical Analysis - Part 3

Operators - Details

. operator: matches any character except newline
? operator: used to implement ε option
ab?c stands for a(b | ε)c
Repetition, alternation, and grouping:
(ab | cd+)?(ef)∗—> (ab | c(d)+ | ε)(ef)∗

Context sensitivity: /,^,$, are context-sensitive
operators

^: If the first char of an expression is ^, then that
expression is matched only at the beginning of a line. Holds
only outside [] operator
$: If the last char of an expression is $, then that expression
is matched only at the end of a line
/: Look ahead operator, indicates trailing context

^ab ---> line beginning with ab
ab$ ---> line ending with ab (same as ab/\n)
DO/({letter}|{digit})* = ({letter}|{digit})*,

Y.N. Srikant Lexical Analysis - Part 3

LEX Actions

Default action is to copy input to output, those characters
which are unmatched
We need to provide patterns to catch characters
yytext: contains the text matched against a pattern
copying yytext can be done by the action ECHO
yyleng: provides the number of characters matched
LEX always tries the rules in the order written down and
the longest match is preferred
integer action1;
[a-z]+ action2;

The input integers will match the second pattern

Y.N. Srikant Lexical Analysis - Part 3

LEX Example 1: EX-1.lex

%%
[A-Z]+ {ECHO; printf("\n";}
.|\n ;
%%
yywrap(){}
main(){yylex();}

/* Input */ /* Output */
wewevWEUFWIGhHkkH WEUFWIG
sdcwehSDWEhTkFLksewT H

H
SDWE
T
FL
T

Y.N. Srikant Lexical Analysis - Part 3

LEX Example 2: EX-2.lex

%%
^[]*\n
\n {ECHO; yylineno++;}
.* {printf("%d\t%s",yylineno,yytext);}
%%

yywrap(){}
main(){ yylineno = 1; yylex(); }

Y.N. Srikant Lexical Analysis - Part 3

LEX Example 2 (contd.)

/* Input and Output */
========================
kurtrtotr
dvure

123456789

euhoyo854
shacg345845nkfg
========================
1 kurtrtotr
2 dvure
3 123456789
4 euhoyo854
5 shacg345845nkfg

Y.N. Srikant Lexical Analysis - Part 3

LEX Example 3: EX-3.lex

%{
FILE *declfile;
%}

blanks [\t]*
letter [a-z]
digit [0-9]
id ({letter}|_)({letter}|{digit}|_)*
number {digit}+
arraydeclpart {id}"["{number}"]"
declpart ({arraydeclpart}|{id})
decllist ({declpart}{blanks}","{blanks})*

{blanks}{declpart}{blanks}
declaration (("int")|("float")){blanks}

{decllist}{blanks};

Y.N. Srikant Lexical Analysis - Part 3

LEX Example 3 (contd.)

%%
{declaration} fprintf(declfile,"%s\n",yytext);
%%

yywrap(){
fclose(declfile);
}
main(){
declfile = fopen("declfile","w");
yylex();
}

Y.N. Srikant Lexical Analysis - Part 3

LEX Example 3: Input, Output, Rejection

wjwkfblwebg2; int ab, float cd, ef;
ewl2efo24hg2jhrto;ty;
int ght,asjhew[37],fuir,gj[45]; sdkvbwrkb;
float ire,dehj[80];
sdvjkjkw
==
float cd, ef;
int ght,asjhew[37],fuir,gj[45];
float ire,dehj[80];
==
wjwkfblwebg2; int ab,
ewl2efo24hg2jhrto;ty;
sdkvbwrkb;

sdvjkjkw

Y.N. Srikant Lexical Analysis - Part 3

LEX Example 4: Identifiers, Reserved Words, and
Constants (id-hex-oct-int-1.lex)

%{
int hex = 0; int oct = 0; int regular =0;
%}
letter [a-zA-Z_]
digit [0-9]
digits {digit}+
digit_oct [0-7]
digit_hex [0-9A-F]
int_qualifier [uUlL]
blanks [\t]+
identifier {letter}({letter}|{digit})*
integer {digits}{int_qualifier}?
hex_const 0[xX]{digit_hex}+{int_qualifier}?
oct_const 0{digit_oct}+{int_qualifier}?

Y.N. Srikant Lexical Analysis - Part 3

LEX Example 4: (contd.)

%%
if {printf("reserved word:%s\n",yytext);}
else {printf("reserved word:%s\n",yytext);}
while {printf("reserved word:%s\n",yytext);}
switch {printf("reserved word:%s\n",yytext);}
{identifier} {printf("identifier :%s\n",yytext);}
{hex_const} {sscanf(yytext,"%i",&hex);

printf("hex constant: %s = %i\n",yytext,hex);}
{oct_const} {sscanf(yytext,"%i",&oct);

printf("oct constant: %s = %i\n",yytext,oct);}
{integer} {sscanf(yytext,"%i",®ular);

printf("integer : %s = %i\n",yytext, regular);}
.|\n ;
%%
yywrap(){}
int main(){yylex();}

Y.N. Srikant Lexical Analysis - Part 3

LEX Example 4: Input and Output

uorme while
0345LA 456UB 0x786lHABC
b0x34
========================
identifier :uorme
reserved word:while
oct constant: 0345L = 229
identifier :A
integer : 456U = 456
identifier :B
hex constant: 0x786l = 1926
identifier :HABC
identifier :b0x34

Y.N. Srikant Lexical Analysis - Part 3

LEX Example 5: Floats in C (C-floats.lex)

digits [0-9]+
exp ([Ee](\+|\-)?{digits})
blanks [\t\n]+
float_qual [fFlL]
%%
{digits}{exp}{float_qual}?/{blanks}

{printf("float no fraction:%s\n",yytext);}
[0-9]*\.{digits}{exp}?{float_qual}?/{blanks}

{printf("float with optional
integer part :%s\n",yytext);}

{digits}\.[0-9]*{exp}?{float_qual}?/{blanks}
{printf("float with

optional fraction:%s\n",yytext);}
.|\n ;
%%
yywrap(){} int main(){yylex();}

Y.N. Srikant Lexical Analysis - Part 3

LEX Example 5: Input and Output

123 345.. 4565.3 675e-5 523.4e+2 98.1e5 234.3.4
345. .234E+09L 987E-6F 5432.E7l
===
float with optional integer part : 4565.3
float no fraction: 675e-5
float with optional integer part : 523.4e+2
float with optional integer part : 98.1e5
float with optional integer part : 3.4
float with optional fraction: 345.
float with optional integer part : .234E+09L
float no fraction: 987E-6F
float with optional fraction: 5432.E7l

Y.N. Srikant Lexical Analysis - Part 3

LEX Example 6: LA for Desk Calculator

number [0-9]+\.?|[0-9]*\.[0-9]+
name [A-Za-z][A-Za-z0-9]*
%%
[] {/* skip blanks */}
{number} {sscanf(yytext,"%lf",&yylval.dval);

return NUMBER;}
{name} {struct symtab *sp =symlook(yytext);

yylval.symp = sp; return NAME;}
"++" {return POSTPLUS;}
"--" {return POSTMINUS;}
"$" {return 0;}
\n|. {return yytext[0];}

Y.N. Srikant Lexical Analysis - Part 3

Syntax Analysis:
Context-free Grammars, Pushdown Automata and Parsing

Part - 1

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Parsing

Outline of the Lecture

What is syntax analysis?
Specification of programming languages: context-free
grammars
Parsing context-free languages: push-down automata
Top-down parsing: LL(1) and recursive-descent parsing
Bottom-up parsing: LR-parsing

Y.N. Srikant Parsing

Grammars

Every programming language has precise grammar rules
that describe the syntactic structure of well-formed
programs

In C, the rules state how functions are made out of
parameter lists, declarations, and statements; how
statements are made of expressions, etc.

Grammars are easy to understand, and parsers for
programming languages can be constructed automatically
from certain classes of grammars
Parsers or syntax analyzers are generated for a particular
grammar
Context-free grammars are usually used for syntax
specification of programming languages

Y.N. Srikant Parsing

What is Parsing or Syntax Analysis?

A parser for a grammar of a programming language
verifies that the string of tokens for a program in that
language can indeed be generated from that grammar
reports any syntax errors in the program
constructs a parse tree representation of the program (not
necessarily explicit)
usually calls the lexical analyzer to supply a token to it
when necessary
could be hand-written or automatically generated
is based on context-free grammars

Grammars are generative mechanisms like regular
expressions
Pushdown automata are machines recognizing
context-free languages (like FSA for RL)

Y.N. Srikant Parsing

Context-free Grammars

A CFG is denoted as G = (N,T ,P,S)

N: Finite set of non-terminals
T : Finite set of terminals
S ∈ N: The start symbol
P: Finite set of productions, each of the form A→ α, where
A ∈ N and α ∈ (N ∪ T)∗

Usually, only P is specified and the first production
corresponds to that of the start symbol
Examples

(1) (2) (3) (4)
E → E + E S → 0S0 S → aSb S → aB | bA
E → E ∗ E S → 1S1 S → ε A→ a | aS | bAA
E → (E) S → 0 B → b | bS | aBB
E → id S → 1

S → ε

Y.N. Srikant Parsing

Derivations

E ⇒E→E+E E + E ⇒E→id id + E ⇒E→id id + id
is a derivation of the terminal string id + id from E
In a derivation, a production is applied at each step, to
replace a nonterminal by the right-hand side of the
corresponding production
In the above example, the productions E → E + E , E → id ,
and E → id , are applied at steps 1,2, and, 3 respectively
The above derivation is represented in short as,
E ⇒∗ id + id , and is read as S derives id + id

Y.N. Srikant Parsing

Context-free Languages

Context-free grammars generate context-free languages
(grammar and language resp.)
The language generated by G, denoted L(G), is
L(G) = {w | w ∈ T ∗, and S ⇒∗ w}
i.e., a string is in L(G), if

1 the string consists solely of terminals
2 the string can be derived from S

Examples
1 L(G1) = Set of all expressions with +, *, names, and

balanced ’(’ and ’)’
2 L(G2) = Set of palindromes over 0 and 1
3 L(G3) = {anbn | n ≥ 0}
4 L(G4) = {x | x has equal no. of a′s and b′s}

A string α ∈ (N ∪ T)∗ is a sentential form if S ⇒∗ α
Two grammars G1 and G2 are equivalent, if L(G1) = L(G2)

Y.N. Srikant Parsing

Derivation Trees

Derivations can be displayed as trees
The internal nodes of the tree are all nonterminals and the
leaves are all terminals
Corresponding to each internal node A, there exists a
production ∈ P, with the RHS of the production being the
list of children of A, read from left to right
The yield of a derivation tree is the list of the labels of all
the leaves read from left to right
If α is the yield of some derivation tree for a grammar G,
then S ⇒∗ α and conversely

Y.N. Srikant Parsing

Derivation Tree Example

Y.N. Srikant Parsing

Leftmost and Rightmost Derivations

If at each step in a derivation, a production is applied to the
leftmost nonterminal, then the derivation is said to be
leftmost. Similarly rightmost derivation.
If w ∈ L(G) for some G, then w has at least one parse
tree and corresponding to a parse tree, w has unique
leftmost and rightmost derivations
If some word w in L(G) has two or more parse trees, then
G is said to be ambiguous
A CFL for which every G is ambiguous, is said to be an
inherently ambiguous CFL

Y.N. Srikant Parsing

Leftmost and Rightmost Derivations: An Example

Y.N. Srikant Parsing

Ambiguous Grammar Examples

The grammar, E → E + E |E ∗ E |(E)|id
is ambiguous, but the following grammar for the same
language is unambiguous
E → E + T |T , T → T ∗ F |F , F → (E)|id
The grammar,
stmt → IF expr stmt |IF expr stmt ELSE stmt |other_stmt

is ambiguous, but the following equivalent grammar is not

stmt → IF expr stmt |IF expr matched_stmt ELSE stmt
matched_stmt →
IF expr matched_stmt ELSE matched_stmt |other_stmt
The language,
L = {anbncmdm | n,m ≥ 1} ∪ {anbmcmdn | n,m ≥ 1},
is inherently ambiguous

Y.N. Srikant Parsing

Ambiguity Example 1

Y.N. Srikant Parsing

Equivalent Unambiguous Grammar

Y.N. Srikant Parsing

Ambiguity Example 2

Y.N. Srikant Parsing

Ambiguity Example 2 (contd.)

Y.N. Srikant Parsing

Fragment of C-Grammar (Statements)

program --> VOID MAIN ’(’ ’)’ compound_stmt
compound_stmt --> ’{’ ’}’ | ’{’ stmt_list ’}’

| ’{’ declaration_list stmt_list ’}’
stmt_list --> stmt | stmt_list stmt
stmt --> compound_stmt| expression_stmt

| if_stmt | while_stmt
expression_stmt --> ’;’| expression ’;’
if_stmt --> IF ’(’ expression ’)’ stmt

| IF ’(’ expression ’)’ stmt ELSE stmt
while_stmt --> WHILE ’(’ expression ’)’ stmt
expression --> assignment_expr

| expression ’,’ assignment_expr

Y.N. Srikant Parsing

Fragment of C-Grammar (Expressions)

assignment_expr --> logical_or_expr
| unary_expr assign_op assignment_expr

assign_op --> ’=’| MUL_ASSIGN| DIV_ASSIGN
| ADD_ASSIGN| SUB_ASSIGN
| AND_ASSIGN| OR_ASSIGN

unary_expr --> primary_expr
| unary_operator unary_expr

unary_operator --> ’+’| ’-’| ’!’
primary_expr --> ID| NUM| ’(’ expression ’)’
logical_or_expr --> logical_and_expr

| logical_or_expr OR_OP logical_and_expr
logical_and_expr --> equality_expr

| logical_and_expr AND_OP equality_expr
equality_expr --> relational_expr

| equality_expr EQ_OP relational_expr
| equality_expr NE_OP relational_expr

Y.N. Srikant Parsing

Fragment of C-Grammar (Expressions and
Declarations)

relational_expr --> add_expr
| relational_expr ’<’ add_expr
| relational_expr ’>’ add_expr
| relational_expr LE_OP add_expr
| relational_expr GE_OP add_expr

add_expr --> mult_expr| add_expr ’+’ mult_expr
| add_expr ’-’ mult_expr

mult_expr --> unary_expr| mult_expr ’*’ unary_expr
| mult_expr ’/’ unary_expr

declarationlist --> declaration
| declarationlist declaration

declaration --> type idlist ’;’
idlist --> idlist ’,’ ID | ID
type --> INT_TYPE | FLOAT_TYPE | CHAR_TYPE

Y.N. Srikant Parsing

Pushdown Automata

A PDA M is a system (Q,Σ, Γ, δ,q0, z0,F), where
Q is a finite set of states
Σ is the input alphabet
Γ is the stack alphabet
q0 ∈ Q is the start state
z0 ∈ Γ is the start symbol on stack (initialization)
F ⊆ Q is the set of final states
δ is the transition function, Q × Σ ∪ {ε} × Γ to finite subsets
of Q × Γ∗

A typical entry of δ is given by
δ(q,a, z) = {(p1, γ1), ((p2, γ2), ..., (pm, γm)}
The PDA in state q, with input symbol a and top-of-stack
symbol z, can enter any of the states pi , replace the symbol z
by the string γi , and advance the input head by one symbol.

Y.N. Srikant Parsing

Pushdown Automata (contd.)

The leftmost symbol of γi will be the new top of stack
a in the above function δ could be ε, in which case, the
input symbol is not used and the input head is not
advanced
For a PDA M, we define L(M), the language accepted by
M by final state, to be
L(M) = {w | (q0,w ,Z0) `∗ (p, ε, γ), for some p ∈ F and
γ ∈ Γ∗}
We define N(M), the language accepted by M by empty
stack, to be
N(M) = {w | (q0,w ,Z0) `∗ (p, ε, ε), for some p ∈ Q
When acceptance is by empty stack, the set of final states
is irrelevant, and usually, we set F = φ

Y.N. Srikant Parsing

PDA - Examples

L = {0n1n | n ≥ 0}
M = ({q0,q1,q2,q3}, {0,1}, {Z ,0}, δ,q0,Z , {q0}), where δ
is defined as follows
δ(q0,0,Z) = {(q1,0Z)}, δ(q1,0,0) = {(q1,00)},
δ(q1,1,0) = {(q2, ε)}, δ(q2,1,0) = {(q2, ε)},
δ(q2, ε,Z) = {(q0, ε)}
(q0,0011,Z) ` (q1,011,0Z) ` (q1,11,00Z) ` (q2,1,0Z) `
(q2, ε,Z) ` (q0, ε, ε)

(q0,001,Z) ` (q1,01,0Z) ` (q1,1,00Z) ` (q2, ε,0Z) `
error
(q0,010,Z) ` (q1,10,0Z) ` (q2,0,Z) ` error

Y.N. Srikant Parsing

Syntax Analysis:
Context-free Grammars, Pushdown Automata and Parsing

Part - 2

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Parsing

Outline of the Lecture

What is syntax analysis? (covered in lecture 1)
Specification of programming languages: context-free
grammars (covered in lecture 1)
Parsing context-free languages: push-down automata
Top-down parsing: LL(1) and recursive-descent parsing
Bottom-up parsing: LR-parsing

Y.N. Srikant Parsing

Pushdown Automata

A PDA M is a system (Q,Σ, Γ, δ,q0, z0,F), where
Q is a finite set of states
Σ is the input alphabet
Γ is the stack alphabet
q0 ∈ Q is the start state
z0 ∈ Γ is the start symbol on stack (initialization)
F ⊆ Q is the set of final states
δ is the transition function, Q × Σ ∪ {ε} × Γ to finite subsets
of Q × Γ∗

A typical entry of δ is given by
δ(q,a, z) = {(p1, γ1), ((p2, γ2), ..., (pm, γm)}
The PDA in state q, with input symbol a and top-of-stack
symbol z, can enter any of the states pi , replace the symbol z
by the string γi , and advance the input head by one symbol.

Y.N. Srikant Parsing

Pushdown Automata (contd.)

The leftmost symbol of γi will be the new top of stack
a in the above function δ could be ε, in which case, the
input symbol is not used and the input head is not
advanced
For a PDA M, we define L(M), the language accepted by
M by final state, to be
L(M) = {w | (q0,w ,Z0) `∗ (p, ε, γ), for some p ∈ F and
γ ∈ Γ∗}
We define N(M), the language accepted by M by empty
stack, to be
N(M) = {w | (q0,w ,Z0) `∗ (p, ε, ε), for some p ∈ Q
When acceptance is by empty stack, the set of final states
is irrelevant, and usually, we set F = φ

Y.N. Srikant Parsing

PDA - Examples

L = {0n1n | n ≥ 0}
M = ({q0,q1,q2,q3}, {0,1}, {Z ,0}, δ,q0,Z , {q0}), where δ
is defined as follows
δ(q0,0,Z) = {(q1,0Z)}, δ(q1,0,0) = {(q1,00)},
δ(q1,1,0) = {(q2, ε)}, δ(q2,1,0) = {(q2, ε)},
δ(q2, ε,Z) = {(q0, ε)}
(q0,0011,Z) ` (q1,011,0Z) ` (q1,11,00Z) ` (q2,1,0Z) `
(q2, ε,Z) ` (q0, ε, ε)

(q0,001,Z) ` (q1,01,0Z) ` (q1,1,00Z) ` (q2, ε,0Z) `
error
(q0,010,Z) ` (q1,10,0Z) ` (q2,0,Z) ` error

Y.N. Srikant Parsing

PDA - Examples (contd.)

L = {wwR | w ∈ {a,b}+}
M = ({q0,q1,q2}, {a,b}, {Z ,a,b}, δ,q0,Z , {q2}), where δ
is defined as follows
δ(q0,a,Z) = {(q0,aZ)}, δ(q0,b,Z) = {(q0,bZ)},
δ(q0,a,a) = {(q0,aa), (q1, ε)}, δ(q0,a,b) = {(q0,ab)},
δ(q0,b,a) = {(q0,ba)}, δ(q0,b,b) = {(q0,bb), (q1, ε)},
δ(q1,a,a) = {(q1, ε)}, δ(q1,b,b) = {(q1, ε)},
δ(q1, ε,Z) = {(q2, ε)}
(q0,abba,Z) ` (q0,bba,aZ) ` (q0,ba,baZ) ` (q1,a,aZ) `
(q1, ε,Z) ` (q2, ε, ε)

(q0,aaa,Z) ` (q0,aa,aZ) ` (q0,a,aaZ) ` (q1, ε,aZ) `
error
(q0,aaa,Z) ` (q0,aa,aZ) ` (q1,a,Z) ` error

Y.N. Srikant Parsing

Nondeterministic and Deterministic PDA

Just as in the case of NFA and DFA, PDA also have two
versions: NPDA and DPDA
However, NPDA are strictly more powerful than the DPDA
For example, the language, L = {wwR | w ∈ {a,b}+} can
be recognized only by an NPDA and not by any DPDA
In the same breath, the language,
L = {wcwR | w ∈ {a,b}+}, can be recognized by a DPDA
In practice we need DPDA, since they have exactly one
possible move at any instant
Our parsers are all DPDA

Y.N. Srikant Parsing

Parsing

Parsing is the process of constructing a parse tree for a
sentence generated by a given grammar
If there are no restrictions on the language and the form of
grammar used, parsers for context-free languages require
O(n3) time (n being the length of the string parsed)

Cocke-Younger-Kasami’s algorithm
Earley’s algorithm

Subsets of context-free languages typically require O(n)
time

Predictive parsing using LL(1) grammars (top-down parsing
method)
Shift-Reduce parsing using LR(1) grammars (bottom-up
parsing method)

Y.N. Srikant Parsing

Top-Down Parsing using LL Grammars

Top-down parsing using predictive parsing, traces the
left-most derivation of the string while constructing the
parse tree
Starts from the start symbol of the grammar, and “predicts”
the next production used in the derivation
Such “prediction” is aided by parsing tables (constructed
off-line)
The next production to be used in the derivation is
determined using the next input symbol to lookup the
parsing table (look-ahead symbol)
Placing restrictions on the grammar ensures that no slot in
the parsing table contains more than one production
At the time of parsing table constrcution, if two productions
become eligible to be placed in the same slot of the parsing
table, the grammar is declared unfit for predictive parsing

Y.N. Srikant Parsing

Top-Down LL-Parsing Example

Y.N. Srikant Parsing

LL(1) Parsing Algorithm

Y.N. Srikant Parsing

LL(1) Parsing Algorithm Example

Y.N. Srikant Parsing

Strong LL(k) Grammars

Let the given grammar be G
Input is extended with k symbols, $k , k is the lookahead of
the grammar
Introduce a new nonterminal S′, and a production,
S′ → S$k , where S is the start symbol of the given
grammar
Consider leftmost derivations only and assume that the
grammar has no useless symbols
A production A→ α in G is called a strong LL(k)
production, if in G
S′ ⇒∗ wAγ ⇒ wαγ ⇒∗ wzy
S′ ⇒∗ w ′Aδ ⇒ w ′βδ ⇒∗ w ′zx
|z| = k , z ∈ Σ∗,w and w ′ ∈ Σ∗, then α = β

A grammar (nonterminal) is strong LL(k) if all its
productions are strong LL(k)

Y.N. Srikant Parsing

Strong LL(k) Grammars (contd.)

Strong LL(k) grammars do not allow different productions
of the same nonterminal to be used even in two different
derivations, if the first k symbols of the strings produced by
αγ and βδ are the same
Example: S → Abc|aAcb, A→ ε|b|c
S is a strong LL(1) nonterminal

S′ ⇒ S$⇒ Abc$⇒ bc$, bbc$, and cbc$, on application of
the productions, A→ ε, A→ b, and, A→ c, respectively.
z = b, b, or c, respectively
S′ ⇒ S$⇒ aAcb$⇒ acb$, abcb$, and accb$, on
application of the productions, A→ ε, A→ b, and, A→ c,
respectively. z = a, in all three cases
In this case, w = w ′ = ε, α = Abc, β = aAcb, but z is
different in the two derivations, in all the derived strings
Hence the nonterminal S is strong LL(1)

Y.N. Srikant Parsing

Strong LL(k) Grammars (contd.)

A is not strong LL(1)
S′ ⇒∗ Abc$⇒ bc$, w = ε, z = b, α = ε (A→ ε)
S′ ⇒∗ Abc$⇒ bbc$, w ′ = ε, z = b, β = b (A→ b)

Even though the lookaheads are the same (z = b), α 6= β,
and therefore, the grammar is not strong LL(1)

A is not strong LL(2)
S′ ⇒∗ Abc$⇒ bc$, w = ε, z = bc, α = ε (A→ ε)
S′ ⇒∗ aAcb$⇒ abcb$, w ′ = a, z = bc, β = b (A→ b)

Even though the lookaheads are the same (z = bc), α 6= β,
and therefore, the grammar is not strong LL(2)

A is strong LL(3) because all the six strings (bc$, bbc, cbc, cb$,
bcb, ccb) can be distinguished using 3-symbol lookahead
(details are for home work)

Y.N. Srikant Parsing

Testable Conditions for LL(1)

We call strong LL(1) as LL(1) from now on and we will not
consider lookaheads longer than 1
The classical condition for LL(1) property uses FIRST and
FOLLOW sets
If α is any string of grammar symbols (α ∈ (N ∪ T)∗), then
FIRST (α) = {a | a ∈ T , and α⇒∗ ax , x ∈ T ∗}
FIRST (ε) = {ε}
If A is any nonterminal, then
FOLLOW (A) = {a | S ⇒∗ αAaβ, α, β ∈ (N ∪ T)∗,

a ∈ T ∪ {$}}
FIRST (α) is determined by α alone, but FOLLOW (A) is
determined by the “context” of A, i.e., the derivations in
which A occurs

Y.N. Srikant Parsing

FIRST and FOLLOW Computation Example

Consider the following grammar
S′ → S$, S → aAS | c, A→ ba | SB, B → bA | S
FIRST (S′) = FIRST (S) = {a, c} because
S′ ⇒ S$⇒ c$, and S′ ⇒ S$⇒ aAS$⇒ abaS$⇒ abac$

FIRST (A) = {a,b, c} because
A⇒ ba, and A⇒ SB, and therefore all symbols in
FIRST (S) are in FIRST (A)

FOLLOW (S) = {a,b, c, $} because
S′ ⇒ S$,
S′ ⇒∗ aAS$⇒ aSBS$⇒ aSbAS$,
S′ ⇒∗ aSBS$⇒ aSSS$⇒ aSaASS$,
S′ ⇒∗ aSSS$⇒ aScS$

FOLLOW (A) = {a, c} because
S′ ⇒∗ aAS$⇒ aAaAS$,
S′ ⇒∗ aAS$⇒ aAc

Y.N. Srikant Parsing

Computation of FIRST : Terminals and Nonterminals

{
for each (a ∈ T) FIRST(a) = {a}; FIRST(ε) = {ε};
for each (A ∈ N) FIRST(A) = ∅;
while (FIRST sets are still changing) {

for each production p {
Let p be the production A→ X1X2...Xn;
FIRST(A) = FIRST(A) ∪ (FIRST(X1) - {ε});
i = 1;
while (ε ∈ FIRST(Xi) && i ≤ n − 1) {

FIRST(A) = FIRST(A) ∪ (FIRST(Xi+1 − {ε}); i + +;
}
if (i == n) && (ε ∈ FIRST(Xn))

FIRST(A) = FIRST(A) ∪{ε}
}

}

Y.N. Srikant Parsing

Syntax Analysis:
Context-free Grammars, Pushdown Automata and Parsing

Part - 3

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Parsing

Outline of the Lecture

What is syntax analysis? (covered in lecture 1)
Specification of programming languages: context-free
grammars (covered in lecture 1)
Parsing context-free languages: push-down automata
(covered in lectures 1 and 2)
Top-down parsing: LL(1) and recursive-descent parsing
Bottom-up parsing: LR-parsing

Y.N. Srikant Parsing

Testable Conditions for LL(1)

We call strong LL(1) as LL(1) from now on and we will not
consider lookaheads longer than 1
The classical condition for LL(1) property uses FIRST and
FOLLOW sets
If α is any string of grammar symbols (α ∈ (N ∪ T)∗), then
FIRST (α) = {a | a ∈ T , and α⇒∗ ax , x ∈ T ∗}
FIRST (ε) = {ε}
If A is any nonterminal, then
FOLLOW (A) = {a | S ⇒∗ αAaβ, α, β ∈ (N ∪ T)∗,

a ∈ T ∪ {$}}
FIRST (α) is determined by α alone, but FOLLOW (A) is
determined by the “context” of A, i.e., the derivations in
which A occurs

Y.N. Srikant Parsing

FIRST and FOLLOW Computation Example

Consider the following grammar
S′ → S$, S → aAS | c, A→ ba | SB, B → bA | S
FIRST (S′) = FIRST (S) = {a, c} because
S′ ⇒ S$⇒ c$, and S′ ⇒ S$⇒ aAS$⇒ abaS$⇒ abac$
FIRST (A) = {a,b, c} because
A⇒ ba, and A⇒ SB, and therefore all symbols in
FIRST (S) are in FIRST (A)
FOLLOW (S) = {a,b, c, $} because
S′ ⇒ S$,
S′ ⇒∗ aAS$⇒ aSBS$⇒ aSbAS$,
S′ ⇒∗ aSBS$⇒ aSSS$⇒ aSaASS$,
S′ ⇒∗ aSSS$⇒ aScS$

FOLLOW (A) = {a, c} because
S′ ⇒∗ aAS$⇒ aAaAS$,
S′ ⇒∗ aAS$⇒ aAc

Y.N. Srikant Parsing

Computation of FIRST : Terminals and Nonterminals

{
for each (a ∈ T) FIRST(a) = {a}; FIRST(ε) = {ε};
for each (A ∈ N) FIRST(A) = ∅;
while (FIRST sets are still changing) {

for each production p {
Let p be the production A→ X1X2...Xn;
FIRST(A) = FIRST(A) ∪ (FIRST(X1) - {ε});
i = 1;
while (ε ∈ FIRST(Xi) && i ≤ n − 1) {

FIRST(A) = FIRST(A) ∪ (FIRST(Xi+1 − {ε}); i ++;
}
if (i == n) && (ε ∈ FIRST(Xn))

FIRST(A) = FIRST(A) ∪{ε}
}

}

Y.N. Srikant Parsing

Computation of FIRST (β): β, a string of Grammar
Symbols

{ /* It is assumed that FIRST sets of terminals and nonterminals
are already available /*
FIRST(β) = ∅;
while (FIRST sets are still changing) {

Let β be the string X1X2...Xn;
FIRST(β) = FIRST(β) ∪ (FIRST(X1) - {ε});
i = 1;
while (ε ∈ FIRST(Xi) && i ≤ n − 1) {

FIRST(β) = FIRST(β) ∪ (FIRST(Xi+1 − {ε}); i ++;
}
if (i == n) && (ε ∈ FIRST(Xn))

FIRST(β) = FIRST(β) ∪{ε}
}

}

Y.N. Srikant Parsing

FIRST Computation: Algorithm Trace - 1

Consider the following grammar
S′ → S$, S → aAS | ε, A→ ba | SB, B → cA | S
Initially, FIRST(S) = FIRST(A) = FIRST(B) = ∅
Iteration 1

FIRST(S) = {a, ε} from the productions S → aAS | ε
FIRST(A) = {b} ∪ FIRST(S) - {ε} ∪ FIRST(B) - {ε} = {b,a}
from the productions A→ ba | SB
(since ε ∈ FIRST(S), FIRST(B) is also included;
since FIRST(B)=φ, ε is not included)
FIRST(B) = {c} ∪ FIRST(S) - {ε} ∪{ε} = {c,a, ε}
from the productions B → cA | S
(ε is included because ε ∈ FIRST(S))

Y.N. Srikant Parsing

FIRST Computation: Algorithm Trace - 2

The grammar is
S′ → S$, S → aAS | ε, A→ ba | SB, B → cA | S
From the first iteration,
FIRST(S) = {a, ε}, FIRST(A) = {b,a}, FIRST(B) = {c,a, ε}
Iteration 2
(values stabilize and do not change in iteration 3)

FIRST(S) = {a, ε} (no change from iteration 1)
FIRST(A) = {b} ∪ FIRST(S) - {ε} ∪ FIRST(B) - {ε} ∪{ε}

= {b,a, c, ε} (changed!)
FIRST(B) = {c,a, ε} (no change from iteration 1)

Y.N. Srikant Parsing

Computation of FOLLOW

{ for each (X ∈ N ∪ T) FOLLOW(X) = ∅;
FOLLOW(S) = {$}; /* S is the start symbol of the grammar */
repeat {

for each production A→ X1X2...Xn {/* Xi 6= ε */
FOLLOW(Xn) = FOLLOW(Xn) ∪ FOLLOW(A);
REST = FOLLOW(A);
for i = n downto 2 {

if (ε ∈ FIRST(Xi)) { FOLLOW(Xi−1) =
FOLLOW(Xi−1) ∪ (FIRST (Xi)− {ε})∪ REST;
REST = FOLLOW(Xi−1);

} else { FOLLOW(Xi−1) = FOLLOW(Xi−1) ∪ FIRST (Xi) ;
REST = FOLLOW(Xi−1); }

}
}

} until no FOLLOW set has changed
}

Y.N. Srikant Parsing

FOLLOW Computation: Algorithm Trace

Consider the following grammar
S′ → S$, S → aAS | ε, A→ ba | SB, B → cA | S
Initially, follow(S) = {$}; follow(A) = follow(B) = ∅
first(S) = {a, ε}; first(A) = {a,b, c, ε}; first(B) = {a, c, ε};
Iteration 1 /* In the following, x ∪ = y means x = x ∪ y */

S → aAS: follow(S)∪ = {$}; rest = follow(S) = {$}
follow(A)∪ = (first(S)− {ε}) ∪ rest = {a, $}
A→ SB: follow(B)∪ = follow(A) = {a, $}
rest = follow(A) = {a,$}
follow(S)∪ = (first(B)− {ε}) ∪ rest = {a, c, $}
B → cA: follow(A)∪ = follow(B) = {a,$}
B → S: follow(S)∪ = follow(B) = {a, c,$}
At the end of iteration 1
follow(S) = {a, c,$}; follow(A) = follow(B) = {a, $}

Y.N. Srikant Parsing

FOLLOW Computation: Algorithm Trace (contd.)

first(S) = {a, ε}; first(A) = {a,b, c, ε}; first(B) = {a, c, ε};
At the end of iteration 1
follow(S) = {a, c, $}; follow(A) = follow(B) = {a, $}
Iteration 2
S → aAS: follow(S)∪ = {a, c, $};
rest = follow(S) = {a, c, $}
follow(A)∪ = (first(S)− {ε}) ∪ rest = {a, c, $} (changed!)
A→ SB: follow(B)∪ = follow(A) = {a, c, $} (changed!)
rest = follow(A) = {a, c, $}
follow(S)∪ = (first(B)− {ε}) ∪ rest = {a, c, $} (no change)
At the end of iteration 2
follow(S) = follow(A) = follow(B) = {a, c, $};
The follow sets do not change any further

Y.N. Srikant Parsing

LL(1) Conditions

Let G be a context-free grammar
G is LL(1) iff for every pair of productions A→ α and
A→ β, the following condition holds

dirsymb(α) ∩ dirsymb(β) = ∅, where
dirsymb(γ) = if (ε ∈ first(γ)) then

((first(γ)− {ε}) ∪ follow(A)) else first(γ)
(γ stands for α or β)
dirsymb stands for “direction symbol set”

An equivalent formulation (as in ALSU’s book) is as below
first(α.follow(A)) ∩ first(β.follow(A)) = ∅

Construction of the LL(1) parsing table

for each production A→ α
for each symbol s ∈ dirsymb(α)
/* s may be either a terminal symbol or $ */

add A→ α to LLPT [A, s]
Make each undefined entry of LLPT as error

Y.N. Srikant Parsing

LL(1) Table Construction using FIRST and FOLLOW

for each production A→ α
for each terminal symbol a ∈ first(α)

add A→ α to LLPT [A,a]
if ε ∈ first(α) {

for each terminal symbol b ∈ follow(A)
add A→ α to LLPT [A,b]

if $ ∈ follow(A)
add A→ α to LLPT [A, $]

}
Make each undefined entry of LLPT as error

After the construction of the LL(1) table is complete
(following any of the two methods), if any slot in the LL(1)
table has two or more productions, then the grammar is
NOT LL(1)

Y.N. Srikant Parsing

Simple Example of LL(1) Grammar

P1: S → if (a) S else S | while (a) S | begin SL end
P2: SL→ S S′

P3: S′ →;SL | ε
{if, while, begin, end, a, (,), ;} are all terminal symbols
Clearly, all alternatives of P1 start with distinct symbols
and hence create no problem
P2 has no choices
Regarding P3, dirsymb(;SL) = {;}, and dirsymb(ε) = {end},
and the two have no common symbols
Hence the grammar is LL(1)

Y.N. Srikant Parsing

LL(1) Table Construction Example 1

Y.N. Srikant Parsing

LL(1) Table Problem Example 1

Y.N. Srikant Parsing

LL(1) Table Construction Example 2

Y.N. Srikant Parsing

LL(1) Table Problem Example 2

Y.N. Srikant Parsing

LL(1) Table Construction Example 3

Y.N. Srikant Parsing

LL(1) Table Construction Example 4

Y.N. Srikant Parsing

Elimination of Useless Symbols

Now we study the grammar transformations, elimination of
useless symbols, elimination of left recursion and left factoring

Given a grammar G = (N,T ,P,S), a non-terminal X is
useful if S ⇒∗ αXβ ⇒∗ w , where, w ∈ T ∗

Otherwise, X is useless
Two conditions have to be met to ensure that X is useful

1 X ⇒∗ w , w ∈ T ∗ (X derives some terminal string)
2 S ⇒∗ αXβ (X occurs in some string derivable from S)

Example: S → AB | CA, B → BC | AB, A→ a,
C → aB | b, D → d

1 A→ a, C → b, D → d , S → CA
2 S → CA, A→ a, C → b

Y.N. Srikant Parsing

Testing for X ⇒∗ w

G’ = (N’,T’,P’,S’) is the new grammar
N_OLD = φ;
N_NEW = {X | X → w , w ∈ T ∗ }
while N_OLD 6= N_NEW do {

N_OLD = N_NEW;
N_NEW = N_OLD ∪{X | X → α, α ∈ (T ∪ N_OLD)∗}

}
N’ = N_NEW; T’ = T; S’ = S;
P’ = {p | all symbols of p are in N ′ ∪ T ′}

Y.N. Srikant Parsing

Testing for S ⇒∗ αXβ

G’ = (N’,T’,P’,S’) is the new grammar
N’ = {S};
Repeat {

for each production A→ α1 | α2 | ... | αn with A ∈ N ′ do
add all nonterminals of α1, α2, ..., αn to N’ and
all terminals of α1, α2, ..., αn to T’

} until there is no change in N’ and T’
P’ = {p | all symbols of p are in N ′ ∪ T ′}; S’ = S

Y.N. Srikant Parsing

Syntax Analysis:
Context-free Grammars, Pushdown Automata and Parsing

Part - 4

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Parsing

Outline of the Lecture

What is syntax analysis? (covered in lecture 1)
Specification of programming languages: context-free
grammars (covered in lecture 1)
Parsing context-free languages: push-down automata
(covered in lectures 1 and 2)
Top-down parsing: LL(1) parsing
(covered in lectures 2 and 3)
Recursive-descent parsing
Bottom-up parsing: LR-parsing

Y.N. Srikant Parsing

Elimination of Left Recursion

A left-recursive grammar has a non-terminal A such that
A⇒+ Aα
Top-down parsing methods (LL(1) and RD) cannot handle
reft-recursive grammars
Left-recursion in grammars can be eliminated by
transformations
A simpler case is that of grammars with immediate left
recursion, where there is a production of the form A→ Aα

Two productions A→ Aα | β can be transformed to
A→ βA′, A′ → αA′ | ε
In general, a group of productions:
A→ Aα1 | Aα2 | ... | Aαm | β1 | β2 | ... | βn
can be transformed to
A→ β1A′ | β2A′ | ... | βnA′, A′ → α1A′ | α2A′ | ... | αmA′ | ε

Y.N. Srikant Parsing

Left Recursion Elimination - An Example

A→ Aα | β ⇒ A→ βA′, A′ → αA′ | ε

The following grammar for regular expressions is
ambiguous:
E → E + E | E E | E∗ | (E) | a | b
Equivalent left-recursive but unambiguous grammar is:
E → E + T | T , T → T F | F , F → F∗ | P, P → (E) | a | b
Equivalent non-left-recursive grammar is:
E → T E ′, E ′ → +T E ′ | ε, T → F T ′, T ′ → F T ′ | ε,
F → P F ′, F ′ → ∗F ′ | ε, P → (E) | a | b

Y.N. Srikant Parsing

Left Factoring

If two alternatives of a production begin with the same
string, then the grammar is not LL(1)
Example: S → 0S1 | 01 is not LL(1)

After left factoring: S → 0S′, S′ → S1 | 1 is LL(1)

General method: A→ αβ1 | αβ2 ⇒ A→ αA′, A′ → β1 | β2

Another example: a grammar for logical expressions is
given below
E → T or E | T , T → F and T | F ,
F → not F | (E) | true | false

This grammar is not LL(1) but becomes LL(1) after left
factoring
E → TE ′, E ′ → or E | ε, T → FT ′, T ′ → and T | ε,
F → not F | (E) | true | false

Y.N. Srikant Parsing

Grammar Transformations may not help!

Choose S1→ else S instead of S1→ ε on lookahead else.
This resolves the conflict. Associates else with the innermost if

Y.N. Srikant Parsing

Recursive-Descent Parsing

Top-down parsing strategy
One function/procedure for each nonterminal
Functions call each other recursively, based on the
grammar
Recursion stack handles the tasks of LL(1) parser stack
LL(1) conditions to be satisfied for the grammar
Can be automatically generated from the grammar
Hand-coding is also easy
Error recovery is superior

Y.N. Srikant Parsing

An Example

Grammar: S′ → S$, S → aAS | c, A→ ba | SB, B → bA | S

/* function for nonterminal S’ */
void main(){/* S’ --> S$ */

fS(); if (token == eof) accept();
else error();

}
/* function for nonterminal S */
void fS(){/* S --> aAS | c */

switch token {
case a : get_token(); fA(); fS();

break;
case c : get_token(); break;
others : error();

}
}

Y.N. Srikant Parsing

An Example (contd.)

void fA(){/* A --> ba | SB */
switch token {
case b : get_token();

if (token == a) get_token();
else error(); break;

case a,c : fS(); fB(); break;
others : error();

}
}
void fB(){/* B --> bA | S */

switch token {
case b : get_token(); fA(); break;
case a,c : fS(); break;
others : error();

}
}

Y.N. Srikant Parsing

Automatic Generation of RD Parsers

Scheme is based on structure of productions
Grammar must satisfy LL(1) conditions
function get_token() obtains the next token from the lexical
analyzer and places it in the global variable token
function error() prints out a suitable error message
In the next slide, for each grammar component, the code
that must be generated is shown

Y.N. Srikant Parsing

Automatic Generation of RD Parsers (contd.)

1 ε : ;
2 a ∈ T : if (token == a) get_token(); else error();
3 A ∈ N : fA(); /* function call for nonterminal A */
4 α1 | α2 | ... | αn :

switch token {
case dirsym(α1): program_segment(α1); break;
case dirsym(α2): program_segment(α2); break;
...
others: error();

}

5 α1α2 ... αn :
program_segment(α1); program_segment(α2); ... ;
program_segment(αn);

6 A→ α : void fA() { program_segment(α); }

Y.N. Srikant Parsing

Bottom-Up Parsing

Begin at the leaves, build the parse tree in small segments,
combine the small trees to make bigger trees, until the root
is reached
This process is called reduction of the sentence to the start
symbol of the grammar
One of the ways of “reducing” a sentence is to follow the
rightmost derivation of the sentence in reverse

Shift-Reduce parsing implements such a strategy
It uses the concept of a handle to detect when to perform
reductions

Y.N. Srikant Parsing

Shift-Reduce Parsing

Handle: A handle of a right sentential form γ, is a
production A→ β and a position in γ, where the string β
may be found and replaced by A, to produce the previous
right sentential form in a rightmost derivation of γ
That is, if S ⇒∗rm αAw ⇒rm αβw , then A→ β in the
position following α is a handle of αβw
A handle will always eventually appear on the top of the
stack, never submerged inside the stack
In S-R parsing, we locate the handle and reduce it by the
LHS of the production repeatedly, to reach the start symbol
These reductions, in fact, trace out a rightmost derivation
of the sentence in reverse. This process is called handle
pruning
LR-Parsing is a method of shift-reduce parsing

Y.N. Srikant Parsing

Examples

1 S → aAcBe, A→ Ab | b, B → d
For the string = abbcde, the rightmost derivation marked
with handles is shown below

S ⇒ aAcBe (aAcBe, S → aAcBe)
⇒ aAcde (d , B → d)
⇒ aAbcde (Ab, A→ Ab)
⇒ abbcde (b, A→ b)

The handle is unique if the grammar is unambiguous!

Y.N. Srikant Parsing

Examples (contd.)

2 S → aAS | c, A→ ba | SB, B → bA | S
For the string = acbbac, the rightmost derivation marked
with handles is shown below

S ⇒ aAS (aAS, S → aAS)
⇒ aAc (c, S → c)
⇒ aSBc (SB, A→ SB)
⇒ aSbAc (bA, B → bA)
⇒ aSbbac (ba, A→ ba)
⇒ acbbac (c, S → c)

Y.N. Srikant Parsing

Examples (contd.)

3 E → E + E , E → E ∗ E , E → (E), E → id
For the string = id + id ∗ id , two rightmost derivation
marked with handles are shown below

E ⇒ E + E (E + E , E → E + E)
⇒ E + E ∗ E (E ∗ E , E → E ∗ E)
⇒ E + E ∗ id (id , E → id)
⇒ E + id ∗ id (id , E → id)
⇒ id + id ∗ id (id , E → id)

E ⇒ E ∗ E (E ∗ E , E → E ∗ E)
⇒ E ∗ id (id , E → id)
⇒ E + E ∗ id (E + E , E → E + E)
⇒ E + id ∗ id (id , E → id)
⇒ id + id ∗ id (id , E → id)

Y.N. Srikant Parsing

Rightmost Derivation and Bottom-UP Parsing

Y.N. Srikant Parsing

Rightmost Derivation and Bottom-UP Parsing (contd.)

Y.N. Srikant Parsing

Shift-Reduce Parsing Algorithm

How do we locate a handle in a right sentential form?
An LR parser uses a DFA to detect the condition that a
handle is now on the stack

Which production to use, in case there is more than one
with the same RHS?

An LR parser uses a parsing table similar to an LL parsing
table, to choose the production

A stack is used to implement an S-R parser, The parser
has four actions

1 shift: the next input symbol is shifted to the top of stack
2 reduce: the right end of the handle is the top of stack;

locates the left end of the handle inside the stack and
replaces the handle by the LHS of an appropriate
production

3 accept: announces successful completion of parsing
4 error: syntax error, error recovery routine is called

Y.N. Srikant Parsing

S-R Parsing Example 1

$ marks the bottom of stack and the right end of the input

Stack Input Action
$ acbbac$ shift
$ a cbbac$ shift
$ ac bbac$ reduce by S → c
$ aS bbac$ shift
$ aSb bac$ shift
$ aSbb ac$ shift
$ aSbba c$ reduce by A→ ba
$ aSbA c$ reduce by B → bA
$ aSB c$ reduce by A→ SB
$ aA c$ shift
$ aAc $ reduce by S → c
$ aAS $ reduce by S → aAS
$ S $ accept

Y.N. Srikant Parsing

S-R Parsing Example 2

$ marks the bottom of stack and the right end of the input

Stack Input Action
$ id1 + id2 ∗ id3$ shift
$ id1 +id2 ∗ id3$ reduce by E → id
$ E +id2 ∗ id3$ shift
$ E+ id2 ∗ id3$ shift
$ E + id2 ∗id3$ reduce by E → id
$ E + E ∗id3$ shift
$ E + E∗ id3$ shift
$ E + E ∗ id3 $ reduce by E → id
$ E + E ∗ E $ reduce by E → E ∗ E
$ E + E $ reduce by E → E + E
$ E $ accept

Y.N. Srikant Parsing

LR Parsing

LR(k) - Left to right scanning with Rightmost derivation in
reverse, k being the number of lookahead tokens

k = 0,1 are of practical interest

LR parsers are also automatically generated using parser
generators
LR grammars are a subset of CFGs for which LR parsers
can be constructed
LR(1) grammars can be written quite easily for practically
all programming language constructs for which CFGs can
be written
LR parsing is the most general non-backtracking
shift-reduce parsing method (known today)
LL grammars are a strict subset of LR grammars - an LL(k)
grammar is also LR(k), but not vice-versa

Y.N. Srikant Parsing

LR Parser Generation

Y.N. Srikant Parsing

LR Parser Configuration

A configuration of an LR parser is:
(s0X1s2X2...Xmsm, aiai+1...an $), where,

stack unexpended input
s0, s1, ..., sm, are the states of the parser, and X1,X2, ...,Xm,
are grammar symbols (terminals or nonterminals)
Starting configuration of the parser: (s0,a1a2...an$),
where, s0 is the initial state of the parser, and a1a2...an is
the string to be parsed
Two parts in the parsing table: ACTION and GOTO

The ACTION table can have four types of entries: shift,
reduce, accept, or error
The GOTO table provides the next state information to be
used after a reduce move

Y.N. Srikant Parsing

LR Parsing Algorithm

Y.N. Srikant Parsing

LR Parsing Example 1 - Parsing Table

Y.N. Srikant Parsing

Syntax Analysis:
Context-free Grammars, Pushdown Automata and Parsing

Part - 5

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Parsing

Outline of the Lecture

What is syntax analysis? (covered in lecture 1)
Specification of programming languages: context-free
grammars (covered in lecture 1)
Parsing context-free languages: push-down automata
(covered in lectures 1 and 2)
Top-down parsing: LL(1) parsing
(covered in lectures 2 and 3)
Recursive-descent parsing (covered in lecture 4)
Bottom-up parsing: LR-parsing

Y.N. Srikant Parsing

LR Parsing

LR(k) - Left to right scanning with Rightmost derivation in
reverse, k being the number of lookahead tokens

k = 0,1 are of practical interest

LR parsers are also automatically generated using parser
generators
LR grammars are a subset of CFGs for which LR parsers
can be constructed
LR(1) grammars can be written quite easily for practically
all programming language constructs for which CFGs can
be written
LR parsing is the most general non-backtracking
shift-reduce parsing method (known today)
LL grammars are a strict subset of LR grammars - an LL(k)
grammar is also LR(k), but not vice-versa

Y.N. Srikant Parsing

LR Parser Generation

Y.N. Srikant Parsing

LR Parser Configuration

A configuration of an LR parser is:
(s0X1s2X2...Xmsm, aiai+1...an $), where,

stack unexpended input
s0, s1, ..., sm, are the states of the parser, and X1,X2, ...,Xm,
are grammar symbols (terminals or nonterminals)
Starting configuration of the parser: (s0,a1a2...an$),
where, s0 is the initial state of the parser, and a1a2...an is
the string to be parsed
Two parts in the parsing table: ACTION and GOTO

The ACTION table can have four types of entries: shift,
reduce, accept, or error
The GOTO table provides the next state information to be
used after a reduce move

Y.N. Srikant Parsing

LR Parsing Algorithm

Y.N. Srikant Parsing

LR Parsing Example 1 - Parsing Table

Y.N. Srikant Parsing

LR Parsing Example 1 (contd.)

Stack Input Action
0 acbbac$ S2
0a2 cbbac$ S3
0a2c3 bbac$ R3 (S → c, goto(2,S) = 8)
0a2S8 bbac$ S10
0a2S8b10 bac$ S6
0a2S8b10b6 ac$ S7
0a2S8b10b6a7 c$ R4 (A→ ba, goto(10,A) = 11)
0a2S8b10A11 c$ R6 (B → bA, goto(8,B) = 9)
0a2S8B9 c$ R5 (A→ SB, goto(2,A) = 4)
0a2A4 c$ S3
0a2A4c3 $ R3 (S → c, goto(4,S) = 5)
0a2A4S5 $ R2 (S → aAS, goto(0,S) = 1)
0S1 $ R1 (S′ → S), and accept

Y.N. Srikant Parsing

LR Parsing Example 2 - Parsing Table

Y.N. Srikant Parsing

LR Parsing Example 2(contd.)

Stack Input Action

0 id + id ∗ id$ S5
0 id 5 +id ∗ id$ R6 (F → id , G(0,F) = 3)
0 F 3 +id ∗ id$ R4 (T → F , G(0,T) = 2)
0 T 2 +id ∗ id$ R2 (E → T , G(0,E) = 1)
0 E 1 +id ∗ id$ S6
0 E 1 + 6 id ∗ id$ S5
0 E 1 + 6 id 5 ∗id$ R6 (F → id , G(6,F) = 3)
0 E 1 + 6F3 ∗id$ R4 (T → F , G(6,T) = 9)
0 E 1 + 6T 9 ∗id$ S7
0 E 1 + 6T 9 ∗ 7 id$ S5
0 E 1 + 6T9 ∗ 7 id 5 $ R6 (F → id , G(7,F) = 10)
0 E 1 + 6T9 ∗ 7F10 $ R3 (T → T ∗ F , G(6,T) = 9)
0 E 1 + 6T9 $ R1 (E → E + T , G(0,E) = 1)
0 E 1 $ R7 (S → E) and accept

Y.N. Srikant Parsing

LR Grammars

Consider a rightmost derivation:
S ⇒∗rm φBt ⇒rm φβt ,
where the production B → β has been applied
A grammar is said to be LR(k), if for any given input string,
at each step of any rightmost derivation, the handle β can
be detected by examining the string φβ and scanning at
most, first k symbols of the unused input string t

Y.N. Srikant Parsing

LR Grammars (contd.)

Example: The grammar,
{S → E , E → E + E | E ∗ E | id}, is not LR(2)

S ⇒1 E ⇒2 E + E ⇒3 E + E ∗ E ⇒4 E + E ∗ id ⇒5

E + id ∗ id ⇒6 id + id ∗ id
S ⇒1′

E ⇒2′
E ∗ E ⇒3′

E ∗ id ⇒4′
E + E ∗ id ⇒5′

E + id ∗ id ⇒6′
id + id ∗ id

In the above two derivations, the handle at steps 6 & 6’ and
at steps 5 & 5’, is E → id , and the position is underlined
(with the same lookahead of two symbols, id+ and +id)
However, the handles at step 4 and at step 4’ are different
(E → id and E → E + E), even though the lookahead of 2
symbols is the same (∗id), and the stack is also the same
(φ = E + E)
That means that the handle cannot be determined using
the lookahead

Y.N. Srikant Parsing

LR Grammars (contd.)

A viable prefix of a sentential form φβt , where β denotes
the handle, is any prefix of φβ. A viable prefix cannot
contain symbols to the right of the handle
Example: S → E#, E → E + T | E − T | T , T → id | (E)
S ⇒ E#⇒ E + T #⇒ E + (E)#⇒ E + (T)#
⇒ E + (id)#
E , E+, E + (, and E + (id , are all viable prefixes of the
right sentential form E + (id)#

It is always possible to add appropriate terminal symbols to
the end of a viable prefix to get a right-sentential form
Viable prefixes characterize the prefixes of sentential forms
that can occur on the stack of an LR parser

Y.N. Srikant Parsing

LR Grammars (contd.)

Theorem: The set of all viable prefixes of all the right
sentential forms of a grammar is a regular language
The DFA of this regular language can detect handles
during LR parsing
When this DFA reaches a “reduction state”, the
corresponding viable prefix cannot grow further and thus
signals a reduction
This DFA can be constructed by the compiler using the
grammar
All LR parsers have such a DFA incorporated in them
We construct an augmented grammar for which we
construct the DFA

If S is the start symbol of G, then G′ contains all
productions of G and also a new production S′ → S
This enables the parser to halt as soon as S′ appears on
the stack

Y.N. Srikant Parsing

DFA for Viable Prefixes - LR(0) Automaton

Y.N. Srikant Parsing

Items and Valid Items

A finite set of items is associated with each state of DFA
An item is a marked production of the form [A→ α1.α2],
where A→ α1α2 is a production and ’.’ denotes the mark
Many items may be associated with a production
e.g., the items [E → .E + T], [E → E .+ T], [E → E + .T],
and [E → E + T .] are associated with the production
E → E + T

An item [A→ α1.α2] is valid for some viable prefix φα1, iff,
there exists some rightmost derivation
S ⇒∗ φAt ⇒ φα1α2t , where t ∈ Σ∗

There may be several items valid for a viable prefix
The items [E → E − .T], [T → .id], and [T → .(E)] are all
valid for the viable prefix “E−” as shown below
S ⇒ E#⇒ E − T #, S ⇒ E#⇒ E − T #⇒ E − id#,
S ⇒ E#⇒ E − T #⇒ E − (E)#

Y.N. Srikant Parsing

Valid Items and States of LR(0) DFA

An item indicates how much of a production has already
been seen and how much remains to be seen

[E → E − .T] indicates that we have already seen a string
derivable from “E−” and that we hope to see next, a string
derivable from T

Each state of an LR(0) DFA contains only those items that
are valid for the same set of viable prefixes

All items in state 7 are valid for the viable prefixes “E−” and
“(E−” (and many more)
All items in state 4 are valid for the viable prefix “(” (and
many more)
In fact, the set of all viable prefixes for which the items in a
state s are valid is the set of strings that can take us from
state 0 (initial) to state s

Constructing the LR(0) DFA using sets of items is very
simple

Y.N. Srikant Parsing

Closure of a Set of Items

Itemset closure(I){ /* I is a set of items */
while (more items can be added to I) {

for each item [A→ α.Bβ] ∈ I {
/* note that B is a nonterminal and is right after the “.” */
for each production B → γ ∈ G

if (item [B → .γ] /∈ I) add item [B → .γ] to I
}
return I

}

Y.N. Srikant Parsing

GOTO set computation

Itemset GOTO(I, X){ /* I is a set of items
X is a grammar symbol, a terminal or a nonterminal */
Let I′ = {[A→ αX .β] | [A→ α.Xβ] ∈ I};
return (closure(I′))

}

Y.N. Srikant Parsing

Intuition behind closure and GOTO

If an item [A→ α.Bδ] is in a state (i.e., item set I), then,
some time in the future, we expect to see in the input, a
string derivable from Bδ

This implies a string derivable from B as well
Therefore, we add an item [B → .β] corresponding to each
production B → β of B, to the state (i.e., item set I)

If I is the set of items valid for a viable prefix γ
All the items in closure(I) are also valid for γ
GOTO(I,X) is the set items valid for the viable prefix γX

If [A → α.Bδ] (in item set I) is valid for the viable prefix φα,
and B → β is a production, we have
S ⇒∗ φAt ⇒ φαBδt ⇒∗ φαBxt ⇒ φαβxt
demonstrating that the item [B → .β] (in the closure of I) is
valid for φα
The above derivation also shows that the item [A → αB.δ]
(in GOTO(I,B) is valid for the viable prefix φαB

Y.N. Srikant Parsing

Construction of Sets of Canonical LR(0) Items

void Set_of_item_sets(G′){ /* G’ is the augmented grammar */
C = {closure({S′ → .S})};/* C is a set of item sets */
while (more item sets can be added to C) {

for each item set I ∈ C and each grammar symbol X
/* X is a grammar symbol, a terminal or a nonterminal */

if ((GOTO(I,X) 6= ∅) && (GOTO(I,X) /∈ C))
C = C ∪GOTO(I,X)

}
}

Each set in C (above) corresponds to a state of a DFA
(LR(0) DFA)
This is the DFA that recognizes viable prefixes

Y.N. Srikant Parsing

Construction of an LR(0) Automaton - Example 1

Y.N. Srikant Parsing

Shift and Reduce Actions

If a state contains an item of the form [A→ α.] (“reduce
item”), then a reduction by the production A→ α is the
action in that state
If there are no “reduce items” in a state, then shift is the
appropriate action
There could be shift-reduce conflicts or reduce-reduce
conflicts in a state

Both shift and reduce items are present in the same state
(S-R conflict), or
More than one reduce item is present in a state (R-R
conflict)
It is normal to have more than one shift item in a state (no
shift-shift conflicts are possible)

If there are no S-R or R-R conflicts in any state of an LR(0)
DFA, then the grammar is LR(0), otherwise, it is not LR(0)

Y.N. Srikant Parsing

Syntax Analysis:
Context-free Grammars, Pushdown Automata and Parsing

Part - 6

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Parsing

Outline of the Lecture

What is syntax analysis? (covered in lecture 1)
Specification of programming languages: context-free
grammars (covered in lecture 1)
Parsing context-free languages: push-down automata
(covered in lectures 1 and 2)
Top-down parsing: LL(1) parsing
(covered in lectures 2 and 3)
Recursive-descent parsing (covered in lecture 4)
Bottom-up parsing: LR-parsing (continued)

Y.N. Srikant Parsing

DFA for Viable Prefixes - LR(0) Automaton

Y.N. Srikant Parsing

Construction of Sets of Canonical LR(0) Items

void Set_of_item_sets(G′){ /* G’ is the augmented grammar */
C = {closure({S′ → .S})};/* C is a set of item sets */
while (more item sets can be added to C) {

for each item set I ∈ C and each grammar symbol X
/* X is a grammar symbol, a terminal or a nonterminal */

if ((GOTO(I,X) 6= ∅) && (GOTO(I,X) /∈ C))
C = C ∪GOTO(I,X)

}
}

Each set in C (above) corresponds to a state of a DFA
(LR(0) DFA)
This is the DFA that recognizes viable prefixes

Y.N. Srikant Parsing

Construction of an LR(0) Automaton - Example 1

Y.N. Srikant Parsing

Shift and Reduce Actions

If a state contains an item of the form [A→ α.] (“reduce
item”), then a reduction by the production A→ α is the
action in that state
If there are no “reduce items” in a state, then shift is the
appropriate action
There could be shift-reduce conflicts or reduce-reduce
conflicts in a state

Both shift and reduce items are present in the same state
(S-R conflict), or
More than one reduce item is present in a state (R-R
conflict)
It is normal to have more than one shift item in a state (no
shift-shift conflicts are possible)

If there are no S-R or R-R conflicts in any state of an LR(0)
DFA, then the grammar is LR(0), otherwise, it is not LR(0)

Y.N. Srikant Parsing

LR(0) Parser Table - Example 1

Y.N. Srikant Parsing

Construction of an LR(0) Parser Table - Example 1

Y.N. Srikant Parsing

LR(0) Automaton - Example 2

Y.N. Srikant Parsing

Construction of an LR(0) Automaton - Example 2

Y.N. Srikant Parsing

LR(0) Parser Table - Example 2

Y.N. Srikant Parsing

Construction of an LR(0) Parser Table - Example 2

Y.N. Srikant Parsing

A Grammar that is not LR(0) - Example 1

Y.N. Srikant Parsing

SLR(1) Parsers

If the grammar is not LR(0), we try to resolve conflicts in
the states using one look-ahead symbol
Example: The expression grammar that is not LR(0)
The state containing the items [T → F .] and [T → F . ∗ T]
has S-R conflicts

Consider the reduce item [T → F .] and the symbols in
FOLLOW (T)
FOLLOW (T) = {+,),$}, and reduction by T → F can be
performed on seeing one of these symbols in the input
(look-ahead), since shift requires seeing ∗ in the input
Recall from the definition of FOLLOW (T) that symbols in
FOLLOW (T) are the only symbols that can legally follow T
in any sentential form, and hence reduction by T → F when
one of these symbols is seen, is correct
If the S-R conflicts can be resolved using the FOLLOW set,
the grammar is said to be SLR(1)

Y.N. Srikant Parsing

A Grammar that is not LR(0) - Example 2

Y.N. Srikant Parsing

Construction of an SLR(1) Parsing Table

Let C = {I0, I1, ..., Ii , ..., In} be the canonical LR(0) collection of items,
with the corresponding states of the parser being 0, 1, ... , i, ... , n
Without loss of generality, let 0 be the initial state of the parser
(containing the item [S′ → .S])
Parsing actions for state i are determined as follows
1. If ([A→ α.aβ] ∈ Ii) && ([A→ αa.β] ∈ Ij)

set ACTION[i, a] = shift j /* a is a terminal symbol */
2. If ([A→ α.] ∈ Ii)

set ACTION[i, a] = reduce A→ α, for all a ∈ follow(A)
3. If ([S′ → S.] ∈ Ii) set ACTION[i, $] = accept
S-R or R-R conflicts in the table imply grammar is not SLR(1)
4. If ([A→ α.Aβ] ∈ Ii) && ([A→ αA.β] ∈ Ij)

set GOTO[i, A] = j /* A is a nonterminal symbol */
All other entries not defined by the rules above are made error

Y.N. Srikant Parsing

A Grammar that is not LR(0) - Example 3

Y.N. Srikant Parsing

A Grammar that is not SLR(1) - Example 1

Y.N. Srikant Parsing

A Grammar that is not SLR(1) - Example 2

Y.N. Srikant Parsing

The Problem with SLR(1) Parsers

SLR(1) parser construction process does not remember
enough left context to resolve conflicts

In the “L = R” grammar (previous slide), the symbol ‘=’ got
into follow(R) because of the following derivation:
S′ ⇒ S ⇒ L = R ⇒ L = L⇒ L = id ⇒ ∗R =id ⇒ ...
The production used is L→ ∗R
The following rightmost derivation in reverse does not exist
(and hence reduction by R → L on ‘=’ in state 2 is illegal)
id = id ⇐ L = id ⇐ R = id ...

Generalization of the above example
In some situations, when a state i appears on top of the
stack, a viable prefix βα may be on the stack such that βA
cannot be followed by ‘a’ in any right sentential form
Thus, the reduction by A→ α would be invalid on ‘a’
In the above example, β = ε, α = L, and A = R; L cannot be
reduced to R on ‘=’, since it would lead to the above illegal
derivation sequence

Y.N. Srikant Parsing

LR(1) Parsers

LR(1) items are of the form [A→ α.β, a], a being the
“lookahead” symbol
Lookahead symbols have no part to play in shift items, but
in reduce items of the form [A→ α., a], reduction by
A→ α is valid only if the next input symbol is ‘a’
An LR(1) item [A→ α.β, a] is valid for a viable prefix γ, if
there is a derivation S ⇒∗rm δAw ⇒rm δαβw , where,
γ = δα, a = first(w) or w = ε and a = $

Consider the grammar: S′ → S, S → aSb | ε
[S → a.Sb, $] is valid for the VP a, S′ ⇒ S ⇒ aSb
[S → a.Sb, b] is valid for the VP aa,
S′ ⇒ S ⇒ aSb ⇒ aaSbb
[S → ., $] is valid for the VP ε, S′ ⇒ S ⇒ ε
[S → aSb., b] is valid for the VP aaSb,
S′ ⇒ S ⇒ aSb ⇒ aaSbb

Y.N. Srikant Parsing

LR(1) Grammar - Example 1

Y.N. Srikant Parsing

Closure of a Set of LR(1) Items

Itemset closure(I){ /* I is a set of LR(1) items */
while (more items can be added to I) {

for each item [A→ α.Bβ, a] ∈ I {
for each production B → γ ∈ G

for each symbol b ∈ first(βa)
if (item [B → .γ, b] /∈ I) add item [B → .γ, b] to I

}
return I

}

Y.N. Srikant Parsing

GOTO set computation

Itemset GOTO(I, X){ /* I is a set of LR(1) items
X is a grammar symbol, a terminal or a nonterminal */
Let I′ = {[A→ αX .β, a] | [A→ α.Xβ, a] ∈ I};
return (closure(I′))

}

Y.N. Srikant Parsing

Construction of Sets of Canonical of LR(1) Items

void Set_of_item_sets(G′){ /* G’ is the augmented grammar */
C = {closure({S′ → .S, $})};/* C is a set of LR(1) item sets */
while (more item sets can be added to C) {

for each item set I ∈ C and each grammar symbol X
/* X is a grammar symbol, a terminal or a nonterminal */

if ((GOTO(I,X) 6= ∅) && (GOTO(I,X) /∈ C))
C = C ∪GOTO(I,X)

}
}

Each set in C (above) corresponds to a state of a DFA
(LR(1) DFA)
This is the DFA that recognizes viable prefixes

Y.N. Srikant Parsing

LR(1) DFA Construction - Example 1

Y.N. Srikant Parsing

Construction of an LR(1) Parsing Table

Let C = {I0, I1, ..., Ii , ..., In} be the canonical LR(1) collection of items,
with the corresponding states of the parser being 0, 1, ... , i, ... , n
Without loss of generality, let 0 be the initial state of the parser
(containing the item [S′ → .S, $])
Parsing actions for state i are determined as follows
1. If ([A→ α.aβ, b] ∈ Ii) && ([A→ αa.β, b] ∈ Ij)

set ACTION[i, a] = shift j /* a is a terminal symbol */
2. If ([A→ α., a] ∈ Ii)

set ACTION[i, a] = reduce A→ α
3. If ([S′ → S., $] ∈ Ii) set ACTION[i, $] = accept
S-R or R-R conflicts in the table imply grammar is not LR(1)
4. If ([A→ α.Aβ, a] ∈ Ii) && ([A→ αA.β, a] ∈ Ij)

set GOTO[i, A] = j /* A is a nonterminal symbol */
All other entries not defined by the rules above are made error

Y.N. Srikant Parsing

Syntax Analysis:
Context-free Grammars, Pushdown Automata and Parsing

Part - 7

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Parsing

Outline of the Lecture

What is syntax analysis? (covered in lecture 1)
Specification of programming languages: context-free
grammars (covered in lecture 1)
Parsing context-free languages: push-down automata
(covered in lectures 1 and 2)
Top-down parsing: LL(1) parsing
(covered in lectures 2 and 3)
Recursive-descent parsing (covered in lecture 4)
Bottom-up parsing: LR-parsing (continued)
YACC Parser generator

Y.N. Srikant Parsing

Closure of a Set of LR(1) Items

Itemset closure(I){ /* I is a set of LR(1) items */
while (more items can be added to I) {

for each item [A→ α.Bβ, a] ∈ I {
for each production B → γ ∈ G

for each symbol b ∈ first(βa)
if (item [B → .γ, b] /∈ I) add item [B → .γ, b] to I

}
return I

}

Y.N. Srikant Parsing

GOTO set computation

Itemset GOTO(I, X){ /* I is a set of LR(1) items
X is a grammar symbol, a terminal or a nonterminal */
Let I′ = {[A→ αX .β, a] | [A→ α.Xβ, a] ∈ I};
return (closure(I′))

}

Y.N. Srikant Parsing

Construction of Sets of Canonical of LR(1) Items

void Set_of_item_sets(G′){ /* G’ is the augmented grammar */
C = {closure({S′ → .S, $})};/* C is a set of LR(1) item sets */
while (more item sets can be added to C) {

for each item set I ∈ C and each grammar symbol X
/* X is a grammar symbol, a terminal or a nonterminal */

if ((GOTO(I,X) 6= ∅) && (GOTO(I,X) /∈ C))
C = C ∪GOTO(I,X)

}
}

Each set in C (above) corresponds to a state of a DFA
(LR(1) DFA)
This is the DFA that recognizes viable prefixes

Y.N. Srikant Parsing

Construction of an LR(1) Parsing Table

Let C = {I0, I1, ..., Ii , ..., In} be the canonical LR(1) collection of items,
with the corresponding states of the parser being 0, 1, ... , i, ... , n
Without loss of generality, let 0 be the initial state of the parser
(containing the item [S′ → .S, $])
Parsing actions for state i are determined as follows
1. If ([A→ α.aβ, b] ∈ Ii) && ([A→ αa.β, b] ∈ Ij)

set ACTION[i, a] = shift j /* a is a terminal symbol */
2. If ([A→ α., a] ∈ Ii)

set ACTION[i, a] = reduce A→ α
3. If ([S′ → S., $] ∈ Ii) set ACTION[i, $] = accept
S-R or R-R conflicts in the table imply grammar is not LR(1)
4. If ([A→ α.Aβ, a] ∈ Ii) && ([A→ αA.β, a] ∈ Ij)

set GOTO[i, A] = j /* A is a nonterminal symbol */
All other entries not defined by the rules above are made error

Y.N. Srikant Parsing

LR(1) Grammar - Example 2

Y.N. Srikant Parsing

A non-LR(1) Grammar

Y.N. Srikant Parsing

LALR(1) Parsers

LR(1) parsers have a large number of states
For C, many thousand states
An SLR(1) parser (or LR(0) DFA) for C will have a few
hundred states (with many conflicts)

LALR(1) parsers have exactly the same number of states
as SLR(1) parsers for the same grammar, and are derived
from LR(1) parsers

SLR(1) parsers may have many conflicts, but LALR(1)
parsers may have very few conflicts
If the LR(1) parser had no S-R conflicts, then the
corresponding derived LALR(1) parser will also have none
However, this is not true regarding R-R conflicts

LALR(1) parsers are as compact as SLR(1) parsers and
are almost as powerful as LR(1) parsers
Most programming language grammars are also LALR(1),
if they are LR(1)

Y.N. Srikant Parsing

Construction of LALR(1) parsers

The core part of LR(1) items (the part after leaving out the
lookahead symbol) is the same for several LR(1) states
(the loohahead symbols will be different)

Merge the states with the same core, along with the
lookahead symbols, and rename them

The ACTION and GOTO parts of the parser table will be
modified

Merge the rows of the parser table corresponding to the
merged states, replacing the old names of states by the
corresponding new names for the merged states
For example, if states 2 and 4 are merged into a new state
24, and states 3 and 6 are merged into a new state 36, all
references to states 2,4,3, and 6 will be replaced by
24,24,36, and 36, respectively

LALR(1) parsers may perform a few more reductions (but
not shifts) than an LR(1) parser before detecting an error

Y.N. Srikant Parsing

LALR(1) Parser Construction - Example 1

Y.N. Srikant Parsing

LALR(1) Parser Construction - Example 1 (contd.)

Y.N. Srikant Parsing

LALR(1) Parser Error Detection

Y.N. Srikant Parsing

Characteristics of LALR(1) Parsers

If an LR(1) parser has no S-R conflicts, then the
corresponding derived LALR(1) parser will also have none

LR(1) and LALR(1) parser states have the same core items
(lookaheads may not be the same)
If an LALR(1) parser state s1 has an S-R conflict, it must
have two items [A→ α.,a] and [B → β.aγ,b]
One of the states s1′, from which s1 is generated, must
have the same core items as s1
If the item [A→ α.,a] is in s1′, then s1′ must also have the
item [B → β.aγ, c] (the lookahead need not be b in s1′ - it
may be b in some other state, but that is not of interest to
us)
These two items in s1′ still create an S-R conflict in the
LR(1) parser
Thus, merging of states with common core can never
introduce a new S-R conflict, because shift depends only
on core, not on lookahead

Y.N. Srikant Parsing

Characteristics of LALR(1) Parsers (contd.)

However, merger of states may introduce a new R-R
conflict in the LALR(1) parser even though the original
LR(1) parser had none
Such grammars are rare in practice
Here is one from ALSU’s book. Please construct the
complete sets of LR(1) items as home work:
S′ → S$, S → aAd | bBd | aBe | bAe
A→ c, B → c
Two states contain the items:
{[A→ c., d], [B → c., e]} and
{[A→ c., e], [B → c., d]}
Merging these two states produces the LALR(1) state:
{[A→ c., d/e], [B → c., d/e]}
This LALR(1) state has a reduce-reduce conflict

Y.N. Srikant Parsing

Error Recovery in LR Parsers - Parser Construction

Compiler writer identifies major non-terminals such as
those for program, statement, block, expression, etc.
Adds to the grammar, error productions of the form
A→ error α, where A is a major non-terminal and α is a
suitable string of grammar symbols (usually terminal
symbols), possibly empty
Associates an error message routine with each error
production
Builds an LALR(1) parser for the new grammar with error
productions

Y.N. Srikant Parsing

Error Recovery in LR Parsers - Parser Operation

When the parser encounters an error, it scans the stack to
find the topmost state containing an error item of the form
A→ .error α
The parser then shifts a token error as though it occurred
in the input
If α = ε, reduces by A→ ε and invokes the error message
routine associated with it
If α 6= ε, discards input symbols until it finds a symbol with
which the parser can proceed
Reduction by A→ .error α happens at the appropriate time
Example: If the error production is A→ .error ;, then the
parser skips input symbols until ’;’ is found, performs
reduction by A→ .error ;, and proceeds as above
Error recovery is not perfect and parser may abort on end
of input

Y.N. Srikant Parsing

LR(1) Parser Error Recovery

Y.N. Srikant Parsing

YACC:
Yet Another Compiler Compiler
A Tool for generating Parsers

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant YACC

YACC Example

%token DING DONG DELL
%start rhyme
%%
rhyme : sound place ’\n’

{printf("string valid\n"); exit(0);};
sound : DING DONG ;
place : DELL ;
%%
#include "lex.yy.c"

int yywrap(){return 1;}
yyerror(char* s)
{ printf("%s\n",s);}
main() {yyparse(); }

Y.N. Srikant YACC

LEX Specification for the YACC Example
%%
ding return DING;
dong return DONG;
dell return DELL;
[]* ;
\n|. return yytext[0];

Compiling and running the parser
lex ding-dong.l
yacc ding-dong.y
gcc -o ding-dong.o y.tab.c
ding-dong.o
Sample inputs | | Sample outputs
ding dong dell || string valid
ding dell || syntax error
ding dong dell$ || syntax error

Y.N. Srikant YACC

Form of a YACC file

YACC has a language for describing context-free
grammars
It generates an LALR(1) parser for the CFG described
Form of a YACC program
%{ declarations – optional
%}
%%
rules – compulsory
%%

programs – optional
YACC uses the lexical analyzer generated by LEX to match
the terminal symbols of the CFG
YACC generates a file named y.tab.c

Y.N. Srikant YACC

Declarations and Rules

Tokens: %token name1 name2 name3, · · ·
Start Symbol: %start name
names in rules: letter(letter | digit | . | _)∗
letter is either a lower case or an upper case character
Values of symbols and actions: Example
A : B

{$$ = 1;}
C
{x = $2; y = $3; $$ = x+y;}
;

Now, value of A is stored in $$ (second one), that of B in
$1, that of action 1 in $2, and that of C in $3.

Y.N. Srikant YACC

Declarations and Rules (contd.)

Intermediate action in the above example is translated into
an ε-production as follows:
$ACT1 : /* empty */

{$$ =1;}
;

A : B $ACT1 C
{x = $2; y = $3; $$ = x+y;}

;

Intermediate actions can return values
For example, the first $$ in the previous example is
available as $2
However, intermediate actions cannot refer to values of
symbols to the left of the action
Actions are translated into C-code which are executed just
before a reduction is performed by the parser

Y.N. Srikant YACC

Lexical Analysis

LA returns integers as token numbers
Token numbers are assigned automatically by YACC,
starting from 257, for all the tokens declared using %token
declaration
Tokens can return not only token numbers but also other
information (e.g., value of a number, character string of a
name, pointer to symbol table, etc.)
Extra values are returned in the variable, yylval, known to
YACC generated parsers

Y.N. Srikant YACC

Ambiguity, Conflicts, and Disambiguation

E → E + E | E − E | E ∗ E | E/E | (E) | id
Ambiguity with left or right associativity of ‘-’ and ‘/’
This causes shift-reduce conflicts in YACC: (E-E-E) – shift
or reduce on -?
Disambiguating rule in YACC:

Default is shift action in S-R conflicts
Reduce by earlier rule in R-R conflicts
Associativity can be specified explicitely

Similarly, precedence of operators causes S-R conflicts.
Precedence can also be specified
Example
%right ’=’
%left ’+’ ’-’ --- same precedence for +, -
%left ’*’ ’/’ --- same precedence for *, /
%right ^ --- highest precedence

Y.N. Srikant YACC

Symbol Values

Tokens and nonterminals are both stack symbols
Stack symbols can be associated with values whose types
are declared in a %union declaration in the YACC
specification file
YACC turns this into a union type called YYSTYPE
With %token and %type declarations, we inform YACC
about the types of values the tokens and nonterminals take
Automatically, references to $1,$2,yylval, etc., refer to
the appropriate member of the union (see example below)

Y.N. Srikant YACC

YACC Example : YACC Specification (desk-3.y)

%{
#define NSYMS 20
struct symtab {

char *name; double value;
}symboltab[NSYMS];

struct symtab *symlook();
#include <string.h>
#include <ctype.h>
#include <stdio.h>
%}

Y.N. Srikant YACC

YACC Example : YACC Specification (contd.)

%union {
double dval;
struct symtab *symp;
}

%token <symp> NAME
%token <dval> NUMBER
%token POSTPLUS
%token POSTMINUS
%left ’=’
%left ’+’ ’-’
%left ’*’ ’/’
%left POSTPLUS
%left POSTMINUS
%right UMINUS
%type <dval> expr

Y.N. Srikant YACC

YACC Example : YACC Specification (contd.)
%%
lines: lines expr ’\n’ {printf("%g\n",$2);}

| lines ’\n’ | /* empty */
| error ’\n’

{yyerror("reenter last line:"); yyerrok; }
;

expr : NAME ’=’ expr {$1 -> value = $3; $$ = $3;}
| NAME {$$ = $1 -> value;}
| expr ’+’ expr {$$ = $1 + $3;}
| expr ’-’ expr {$$ = $1 - $3;}
| expr ’*’ expr {$$ = $1 * $3;}
| expr ’/’ expr {$$ = $1 / $3;}
| ’(’ expr ’)’ {$$ = $2;}
| ’-’ expr %prec UMINUS {$$ = - $2;}
| expr POSTPLUS {$$ = $1 + 1;}
| expr POSTMINUS {$$ = $1 - 1;}
| NUMBER

Y.N. Srikant YACC

YACC Example : LEX Specification (desk-3.l)

number [0-9]+\.?|[0-9]*\.[0-9]+
name [A-Za-z][A-Za-z0-9]*
%%
[] {/* skip blanks */}
{number} {sscanf(yytext,"%lf",&yylval.dval);

return NUMBER;}
{name} {struct symtab *sp =symlook(yytext);

yylval.symp = sp; return NAME;}
"++" {return POSTPLUS;}
"--" {return POSTMINUS;}
"$" {return 0;}
\n|. {return yytext[0];}

Y.N. Srikant YACC

YACC Example : Support Routines

%%
void initsymtab()
{int i = 0;
for(i=0; i<NSYMS; i++) symboltab[i].name = NULL;

}
int yywrap(){return 1;}
yyerror(char* s) { printf("%s\n",s);}
main() {initsymtab(); yyparse(); }

#include "lex.yy.c"

Y.N. Srikant YACC

YACC Example : Support Routines (contd.)

struct symtab* symlook(char* s)
{struct symtab* sp = symboltab; int i = 0;
while ((i < NSYMS) && (sp -> name != NULL))
{ if(strcmp(s,sp -> name) == 0) return sp;
sp++; i++;

}
if(i == NSYMS) {
yyerror("too many symbols"); exit(1);

}
else { sp -> name = strdup(s);

return sp;
}

}

Y.N. Srikant YACC

Error Recovery in YACC

In order to prevent a cascade of error messages, the
parser remains in error state (after entering it) until three
tokens have been successfully shifted onto the stack
In case an error happens before this, no further messages
are given and the input symbol (causing the error) is
quietly deleted
The user may identify major nonterminals such as those
for program, statement, or block, and add error
productions for these to the grammar
Examples
statement → error {action1}
statement → error ‘;’ {action2}

Y.N. Srikant YACC

YACC Error Recovery Example

%token DING DONG DELL
%start S
%%
S : rhyme{printf("string valid\n"); exit(0);}
rhyme : sound place
rhyme : error DELL{yyerror("msg1:token skipped");}
sound : DING DONG ;
place : DELL ;
place : error DELL{yyerror("msg2:token skipped");}
%%

Y.N. Srikant YACC

Semantic Analysis with Attribute Grammars
Part 1

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Semantic Analysis

Outline of the Lecture

Introduction
Attribute grammars
Attributed translation grammars
Semantic analysis with attributed translation grammars

Y.N. Srikant Semantic Analysis

Compiler Overview

Y.N. Srikant Semantic Analysis

Semantic Analysis

Semantic consistency that cannot be handled at the
parsing stage is handled here
Parsers cannot handle context-sensitive features of
programming languages
These are static semantics of programming languages and
can be checked by the semantic analyzer

Variables are declared before use
Types match on both sides of assignments
Parameter types and number match in declaration and use

Compilers can only generate code to check dynamic
semantics of programming languages at runtime

whether an overflow will occur during an aritmetic operation
whether array limits will be crossed during execution
whether recursion will cross stack limits
whether heap memory will be insufficient

Y.N. Srikant Semantic Analysis

Static Semantics

int dot_prod(int x[], int y[]){
int d, i; d = 0;
for (i=0; i<10; i++) d += x[i]*y[i];
return d;

}
main(){
int p; int a[10], b[10];
p = dot_prod(a,b);

}

Samples of static semantic checks in main
Types of p and return type of dot_prod match
Number and type of the parameters of dot_prod are the
same in both its declaration and use
p is declared before use, same for a and b

Y.N. Srikant Semantic Analysis

Static Semantics: Errors given by gcc Compiler

int dot_product(int a[], int b[]) {...}

1 main(){int a[10]={1,2,3,4,5,6,7,8,9,10};
2 int b[10]={1,2,3,4,5,6,7,8,9,10};
3 printf("%d", dot_product(b));
4 printf("%d", dot_product(a,b,a));
5 int p[10]; p=dotproduct(a,b); printf("%d",p);}

In function ‘main’:
error in 3: too few arguments to fn ‘dot_product’
error in 4: too many arguments to fn ‘dot_product’
error in 5: incompatible types in assignment
warning in 5: format ‘%d’ expects type ‘int’, but

argument 2 has type ‘int *’

Y.N. Srikant Semantic Analysis

Static Semantics

int dot_prod(int x[], int y[]){
int d, i; d = 0;
for (i=0; i<10; i++) d += x[i]*y[i];
return d;

}
main(){
int p; int a[10], b[10];
p = dot_prod(a,b);

}

Samples of static semantic checks in dot_prod
d and i are declared before use
Type of d matches the return type of dot_prod
Type of d matches the result type of “∗”
Elements of arrays x and y are compatible with “∗”

Y.N. Srikant Semantic Analysis

Dynamic Semantics

int dot_prod(int x[], int y[]){
int d, i; d = 0;
for (i=0; i<10; i++) d += x[i]*y[i];
return d;

}
main(){
int p; int a[10], b[10];
p = dot_prod(a,b);

}

Samples of dynamic semantic checks in dot_prod
Value of i does not exceed the declared range of arrays x
and y (both lower and upper)
There are no overflows during the operations of “∗” and “+”
in d += x[i]*y[i]

Y.N. Srikant Semantic Analysis

Dynamic Semantics

int fact(int n){
if (n==0) return 1;
else return (n*fact(n-1));

}
main(){int p; p = fact(10); }

Samples of dynamic semantic checks in fact
Program stack does not overflow due to recursion
There is no overflow due to “∗” in n*fact(n-1)

Y.N. Srikant Semantic Analysis

Semantic Analysis

Type information is stored in the symbol table or the syntax
tree

Types of variables, function parameters, array dimensions,
etc.
Used not only for semantic validation but also for
subsequent phases of compilation

If declarations need not appear before use (as in C++),
semantic analysis needs more than one pass
Static semantics of PL can be specified using attribute
grammars
Semantic analyzers can be generated semi-automatically
from attribute grammars
Attribute grammars are extensions of context-free
grammars

Y.N. Srikant Semantic Analysis

Attribute Grammars

Let G = (N,T ,P,S) be a CFG and let V = N ∪ T .
Every symbol X of V has associated with it a set of
attributes (denoted by X .a, X .b, etc.)
Two types of attributes: inherited (denoted by AI(X))and
synthesized (denoted by AS(X))
Each attribute takes values from a specified domain (finite
or infinite), which is its type

Typical domains of attributes are, integers, reals,
characters, strings, booleans, structures, etc.
New domains can be constructed from given domains by
mathematical operations such as cross product, map, etc.
array: a map, N → D, where, N and D are domains of
natural numbers and the given objects, respectively
structure: a cross-product, A1 × A2 × . . .× An, where n is
the number of fields in the structure, and Ai is the domain of
the i th field

Y.N. Srikant Semantic Analysis

Attribute Computation Rules

A production p ∈ P has a set of attribute computation rules
(functions)
Rules are provided for the computation of

Synthesized attributes of the LHS non-terminal of p
Inherited attributes of the RHS non-terminals of p

These rules can use attributes of symbols from the
production p only

Rules are strictly local to the production p (no side effects)
Restrictions on the rules define different types of attribute
grammars

L-attribute grammars, S-attribute grammars, ordered
attribute grammars, absolutely non-circular attribute
grammars, circular attribute grammars, etc.

Y.N. Srikant Semantic Analysis

Synthesized and Inherited Attributes

An attribute cannot be both synthesized and inherited, but
a symbol can have both types of attributes
Attributes of symbols are evaluated over a parse tree by
making passes over the parse tree
Synthesized attributes are computed in a bottom-up
fashion from the leaves upwards

Always synthesized from the attribute values of the children
of the node
Leaf nodes (terminals) have synthesized attributes
initialized by the lexical analyzer and cannot be modified
An AG with only synthesized attributes is an S-attributed
grammar (SAG)
YACC permits only SAGs

Inherited attributes flow down from the parent or siblings to
the node in question

Y.N. Srikant Semantic Analysis

Attribute Grammar - Example 1

The following CFG
S → A B C, A→ aA | a, B → bB | b, C → cC | c
generates: L(G) = {ambncp | m,n,p ≥ 1}
We define an AG (attribute grammar) based on this CFG to
generate L = {anbncn | n ≥ 1}
All the non-terminals will have only synthesized attributes

AS(S) = {equal ↑: {T ,F}}
AS(A) = AS(B) = AS(C) = {count ↑: integer}

Y.N. Srikant Semantic Analysis

Attribute Grammar - Example 1 (contd.)

1 S → ABC {S.equal ↑:= if A.count ↑= B.count ↑ &
B.count ↑= C.count ↑ then T else F}

2 A1 → aA2 {A1.count ↑:= A2.count ↑ +1}
3 A→ a {A.count ↑:= 1}
4 B1 → bB2 {B1.count ↑:= B2.count ↑ +1}
5 B → b {B.count ↑:= 1}
6 C1 → cC2 {C1.count ↑:= C2.count ↑ +1}
7 C → c {C.count ↑:= 1}

Y.N. Srikant Semantic Analysis

Attribute Grammar - Example 1 (contd.)

1 S → ABC {S.equal ↑:= if A.count ↑= B.count ↑ &
B.count ↑= C.count ↑ then T else F}

2 A1 → aA2 {A1.count ↑:= A2.count ↑ +1}
3 A→ a {A.count ↑:= 1}
4 B1 → bB2 {B1.count ↑:= B2.count ↑ +1}
5 B → b {B.count ↑:= 1}
6 C1 → cC2 {C1.count ↑:= C2.count ↑ +1}
7 C → c {C.count ↑:= 1}

Y.N. Srikant Semantic Analysis

Attribute Grammar - Example 1 (contd.)

1 S → ABC {S.equal ↑:= if A.count ↑= B.count ↑ &
B.count ↑= C.count ↑ then T else F}

2 A1 → aA2 {A1.count ↑:= A2.count ↑ +1}
3 A→ a {A.count ↑:= 1}
4 B1 → bB2 {B1.count ↑:= B2.count ↑ +1}
5 B → b {B.count ↑:= 1}
6 C1 → cC2 {C1.count ↑:= C2.count ↑ +1}
7 C → c {C.count ↑:= 1}

Y.N. Srikant Semantic Analysis

Attribute Grammar - Example 1 (contd.)

1 S → ABC {S.equal ↑:= if A.count ↑= B.count ↑ &
B.count ↑= C.count ↑ then T else F}

2 A1 → aA2 {A1.count ↑:= A2.count ↑ +1}
3 A→ a {A.count ↑:= 1}
4 B1 → bB2 {B1.count ↑:= B2.count ↑ +1}
5 B → b {B.count ↑:= 1}
6 C1 → cC2 {C1.count ↑:= C2.count ↑ +1}
7 C → c {C.count ↑:= 1}

Y.N. Srikant Semantic Analysis

Attribute Dependence Graph

Let T be a parse tree generated by the CFG of an AG, G.
The attribute dependence graph (dependence graph for
short) for T is the directed graph, DG(T) = (V ,E), where

V = {b|b is an attribute instance of some tree node}, and

E = {(b, c)|b, c ∈ V , b and c are attributes of grammar
symbols in the same production p of B, and the value of b
is used for computing the value of c in an attribute
computation rule associated with production p}

Y.N. Srikant Semantic Analysis

Attribute Dependence Graph

An AG G is non-circular, iff for all trees T derived from G,
DG(T) is acyclic

Non-circularity is very expensive to determine (exponential
in the size of the grammar)
Therefore, our interest will be in subclasses of AGs whose
non-circularity can be determined efficiently

Assigning consistent values to the attribute instances in
DG(T) is attribute evaluation

Y.N. Srikant Semantic Analysis

Attribute Evaluation Strategy

Construct the parse tree
Construct the dependence graph
Perform topological sort on the dependence graph and
obtain an evaluation order
Evaluate attributes according to this order using the
corresponding attribute evaluation rules attached to the
respective productions
Multiple attributes at a node in the parse tree may result in
that node to be visited multiple number of times

Each visit resulting in the evaluation of at least one attribute

Y.N. Srikant Semantic Analysis

Attribute Evaluation Algorithm

Input: A parse tree T with unevaluated attribute instances
Output: T with consistent attribute values
{ Let (V ,E) = DG(T);

Let W = {b | b ∈ V & indegree(b) = 0};
while W 6= φ do

{ remove some b from W ;
value(b) := value defined by appropriate attribute

computation rule;
for all (b, c) ∈ E do

{ indegree(c) := indegree(c)− 1;
if indegree(c) = 0 then W := W ∪ {c};

}
}

}

Y.N. Srikant Semantic Analysis

Dependence Graph for Example 1

Y.N. Srikant Semantic Analysis

Attribute Grammar - Example 2

AG for the evaluation of a real number from its bit-string
representation
Example: 110.101 = 6.625
N → L.R, L→ BL | B, R → BR | B, B → 0 | 1
AS(N) = AS(R) = AS(B) = {value ↑: real},
AS(L) = {length ↑: integer , value ↑: real}

1 N → L.R {N.value ↑:= L.value ↑ +R.value ↑}
2 L→ B {L.value ↑:= B.value ↑; L.length ↑:= 1}
3 L1 → BL2 {L1.length ↑:= L2.length ↑ +1;

L1.value ↑:= B.value ↑ ∗2L2.length↑ + L2.value ↑}
4 R → B {R.value ↑:= B.value ↑ /2}
5 R1 → BR2 {R1.value ↑:= (B.value ↑ +R2.value ↑)/2}
6 B → 0 {B.value ↑:= 0}
7 B → 1 {B.value ↑:= 1}

Y.N. Srikant Semantic Analysis

Semantic Analysis with Attribute Grammars
Part 2

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Semantic Analysis

Outline of the Lecture

Introduction (covered in lecture 1)
Attribute grammars
Attributed translation grammars
Semantic analysis with attributed translation grammars

Y.N. Srikant Semantic Analysis

Attribute Grammars

Let G = (N,T ,P,S) be a CFG and let V = N ∪ T .
Every symbol X of V has associated with it a set of
attributes
Two types of attributes: inherited and synthesized
Each attribute takes values from a specified domain
A production p ∈ P has a set of attribute computation rules
for

synthesized attributes of the LHS non-terminal of p
inherited attributes of the RHS non-terminals of p

Rules are strictly local to the production p (no side effects)

Y.N. Srikant Semantic Analysis

Synthesized and Inherited Attributes

An attribute cannot be both synthesized and inherited, but
a symbol can have both types of attributes
Attributes of symbols are evaluated over a parse tree by
making passes over the parse tree
Synthesized attributes are computed in a bottom-up
fashion from the leaves upwards

Always synthesized from the attribute values of the children
of the node
Leaf nodes (terminals) have synthesized attributes (only)
initialized by the lexical analyzer and cannot be modified

Inherited attributes flow down from the parent or siblings to
the node in question

Y.N. Srikant Semantic Analysis

Attribute Evaluation Strategy

Construct the parse tree
Construct the dependence graph
Perform topological sort on the dependence graph and
obtain an evaluation order
Evaluate attributes according to this order using the
corresponding attribute evaluation rules attached to the
respective productions

Y.N. Srikant Semantic Analysis

Attribute Grammar - Example 2

AG for the evaluation of a real number from its bit-string
representation
Example: 110.101 = 6.625
N → L.R, L→ BL | B, R → BR | B, B → 0 | 1
AS(N) = AS(R) = AS(B) = {value ↑: real},
AS(L) = {length ↑: integer , value ↑: real}

1 N → L.R {N.value ↑:= L.value ↑ +R.value ↑}
2 L→ B {L.value ↑:= B.value ↑; L.length ↑:= 1}
3 L1 → BL2 {L1.length ↑:= L2.length ↑ +1;

L1.value ↑:= B.value ↑ ∗2L2.length↑ + L2.value ↑}
4 R → B {R.value ↑:= B.value ↑ /2}
5 R1 → BR2 {R1.value ↑:= (B.value ↑ +R2.value ↑)/2}
6 B → 0 {B.value ↑:= 0}
7 B → 1 {B.value ↑:= 1}

Y.N. Srikant Semantic Analysis

Dependence Graph for Example 2

Y.N. Srikant Semantic Analysis

Attribute Evaluation for Example 2 - 1

Y.N. Srikant Semantic Analysis

Attribute Evaluation for Example 2 - 2

Nodes 1,2: B → 1 {B.value ↑:= 1}
Node 3: B → 0 {B.value ↑:= 0}

Y.N. Srikant Semantic Analysis

Attribute Evaluation for Example 2 - 3

Node 4: L→ B {L.value ↑:= B.value ↑; L.length ↑:= 1}
Node 5: L1 → BL2 {L1.length ↑:= L2.length ↑ +1;

L1.value ↑:= B.value ↑ ∗2L2.length↑ + L2.value ↑}

Y.N. Srikant Semantic Analysis

Attribute Evaluation for Example 2 - 4

Node 6: L1 → BL2 {L1.length ↑:= L2.length ↑ +1;
L1.value ↑:= B.value ↑ ∗2L2.length↑ + L2.value ↑}

Nodes 7,9: B → 1 {B.value ↑:= 1}
Node 8: B → 0 {B.value ↑:= 0}

Y.N. Srikant Semantic Analysis

Attribute Evaluation for Example 2 - 5

Node 10: R → B {R.value ↑:= B.value ↑ /2}
Nodes 11,12:
R1 → BR2 {R1.value ↑:= (B.value ↑ +R2.value ↑)/2}
Node 13: N → L.R {N.value ↑:= L.value ↑ +R.value ↑}

Y.N. Srikant Semantic Analysis

Attribute Grammar - Example 3

A simple AG for the evaluation of a real number from its
bit-string representation
Example: 110.1010 = 6 + 10/24 = 6 + 10/16 =
6 + 0.625 = 6.625
N → X .X , X → BX | B, B → 0 | 1
AS(N) = AS(B) = {value ↑: real},
AS(X) = {length ↑: integer , value ↑: real}

1 N → X1.X2 {N.value ↑:= X1.value ↑ +X2.value ↑ /2X2.length}
2 X → B {X .value ↑:= B.value ↑; X .length ↑:= 1}
3 X1 → BX2 {X1.length ↑:= X2.length ↑ +1;

X1.value ↑:= B.value ↑ ∗2X2.length↑ + X2.value ↑}
4 B → 0 {B.value ↑:= 0}
5 B → 1 {B.value ↑:= 1}

Y.N. Srikant Semantic Analysis

Attribute Grammar - Example 4

An AG for associating type information with names in
variable declarations
AI(L) = AI(ID) = {type ↓: {integer , real}}
AS(T) = {type ↑: {integer , real}}
AS(ID) = AS(identifier) = {name ↑: string}

1 DList → D | DList ; D
2 D → T L {L.type ↓:= T .type ↑}
3 T → int {T .type ↑:= integer}
4 T → float {T .type ↑:= real}
5 L→ ID {ID.type ↓:= L.type ↓}
6 L1 → L2 , ID {L2.type ↓:= L1.type ↓; ID.type ↓:= L1.type ↓}
7 ID → identifier {ID.name ↑:= identifier .name ↑}

Example: int a,b,c; float x,y
a,b, and c are tagged with type integer
x,y, and z are tagged with type real

Y.N. Srikant Semantic Analysis

Attribute Evaluation for Example 4

1. DList → D | DList ; D 2. D → T L {L.type ↓:= T .type ↑}
3. T → int {T .type ↑:= integer} 4. T → float {T .type ↑:= real}
5. L→ ID {ID.type ↓:= L.type ↓}
6. L1 → L2 , ID {L2.type ↓:= L1.type ↓; ID.type ↓:= L1.type ↓}
7. ID → identifier {ID.name ↑:= identifier .name ↑}

Y.N. Srikant Semantic Analysis

Attribute Grammar - Example 5

Let us first consider the CFG for a simple language
1 S −→ E
2 E −→ E + T | T | let id = E in (E)
3 T −→ T ∗ F | F
4 F −→ (E) | number | id

This language permits expressions to be nested inside
expressions and have scopes for the names

let A = 5 in ((let A = 6 in (A*7)) - A) evaluates correctly to
37, with the scopes of the two instances of A being different

It requires a scoped symbol table for implementation
An abstract attribute grammar for the above language uses
both inherited and synthesized attributes
Both inherited and synthesized attributes can be evaluated
in one pass (from left to right) over the parse tree
Inherited attributes cannot be evaluated during LR parsing

Y.N. Srikant Semantic Analysis

Attribute Grammar - Example 5

1 S −→ E {E .symtab ↓:= φ;S.val ↑:= E .val ↑}
2 E1 −→ E2 + T {E2.symtab ↓:= E1.symtab ↓;

E1.val ↑:= E2.val ↑ +T .val ↑;T .symtab ↓:= E1.symtab ↓}
3 E −→ T {T .symtab ↓:= E .symtab ↓;E .val ↑:= T .val ↑}
4 E1 −→ let id = E2 in (E3)
{E1.val ↑:= E3.val ↑;E2.symtab ↓:= E1.symtab ↓;
E3.symtab ↓:= E1.symtab ↓ \{id .name ↑→ E2.val ↑}}

5 T1 −→ T2 ∗ F {T1.val ↑:= T2.val ↑ ∗F .val ↑;
T2.symtab ↓:= T 1.symtab ↓;F .symtab ↓:= T1.symtab ↓}

6 T −→ F {T .val ↑:= F .val ↑;F .symtab ↓:= T .symtab ↓}
7 F −→ (E) {F .val ↑:= E .val ↑;E .symtab ↓:= F .symtab ↓}
8 F −→ number {F .val ↑:= number .val ↑}
9 F −→ id {F .val ↑:= F .symtab ↓ [id .name ↑]}

Y.N. Srikant Semantic Analysis

Attribute Flow and Evaluation - Example 5

Y.N. Srikant Semantic Analysis

L-Attributed and S-Attributed Grammars

An AG with only synthesized attributes is an S-attributed
grammar

Attributes of SAGs can be evaluated in any bottom-up order
over a parse tree (single pass)
Attribute evaluation can be combined with LR-parsing
(YACC)

In L-attributed grammars, attribute dependencies always
go from left to right
More precisely, each attribute must be

Synthesized, or
Inherited, but with the following limitations:
consider a production p : A→ X1X2...Xn. Let Xi .a ∈ AI(Xi).
Xi .a may use only

elements of AI(A)
elements of AI(Xk) or AS(Xk), k = 1, ..., i − 1
(i.e., attibutes of X1, ...,Xi−1)

We concentrate on SAGs, and 1-pass LAGs, in which
attribute evaluation can be combined with LR, LL or RD
parsing

Y.N. Srikant Semantic Analysis

Attribute Evaluation Algorithm for LAGs

Input: A parse tree T with unevaluated attribute instances
Output: T with consistent attribute values
void dfvisit(n: node)
{ for each child m of n, from left to right do

{ evaluate inherited attributes of m;
dfvisit(m)

};
evaluate synthesized attributes of n

}

Y.N. Srikant Semantic Analysis

Example of LAG - 1

1. DList → D | DList ; D 2. D → T L {L.type ↓:= T .type ↑}
3. T → int {T .type ↑:= integer} 4. T → float {T .type ↑:= real}
5. L→ ID {ID.type ↓:= L.type ↓}
6. L1 → L2 , ID {L2.type ↓:= L1.type ↓; ID.type ↓:= L1.type ↓}
7. ID → identifier {ID.name ↑:= identifier .name ↑}

Y.N. Srikant Semantic Analysis

Example of LAG - 1, Evaluation Order

1. DList → D | DList ; D 2. D → T L {L.type ↓:= T .type ↑}
3. T → int {T .type ↑:= integer} 4. T → float {T .type ↑:= real}
5. L→ ID {ID.type ↓:= L.type ↓}
6. L1 → L2 , ID {L2.type ↓:= L1.type ↓; ID.type ↓:= L1.type ↓}
7. ID → identifier {ID.name ↑:= identifier .name ↑}

Y.N. Srikant Semantic Analysis

Semantic Analysis with Attribute Grammars
Part 3

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Semantic Analysis

Outline of the Lecture

Introduction (covered in lecture 1)
Attribute grammars
Attributed translation grammars
Semantic analysis with attributed translation grammars

Y.N. Srikant Semantic Analysis

Attribute Grammars

Let G = (N,T ,P,S) be a CFG and let V = N ∪ T .
Every symbol X of V has associated with it a set of
attributes
Two types of attributes: inherited and synthesized
Each attribute takes values from a specified domain
A production p ∈ P has a set of attribute computation rules
for

synthesized attributes of the LHS non-terminal of p
inherited attributes of the RHS non-terminals of p

Rules are strictly local to the production p (no side effects)

Y.N. Srikant Semantic Analysis

L-Attributed and S-Attributed Grammars

An AG with only synthesized attributes is an S-attributed
grammar

Attributes of SAGs can be evaluated in any bottom-up order
over a parse tree (single pass)
Attribute evaluation can be combined with LR-parsing
(YACC)

In L-attributed grammars, attribute dependencies always
go from left to right
More precisely, each attribute must be

Synthesized, or
Inherited, but with the following limitations:
consider a production p : A→ X1X2...Xn. Let Xi .a ∈ AI(Xi).
Xi .a may use only

elements of AI(A)
elements of AI(Xk) or AS(Xk), k = 1, ..., i − 1
(i.e., attibutes of X1, ...,Xi−1)

We concentrate on SAGs, and 1-pass LAGs, in which
attribute evaluation can be combined with LR, LL or RD
parsing

Y.N. Srikant Semantic Analysis

Attribute Evaluation Algorithm for LAGs

Input: A parse tree T with unevaluated attribute instances
Output: T with consistent attribute values
void dfvisit(n: node)
{ for each child m of n, from left to right do

{ evaluate inherited attributes of m;
dfvisit(m)

};
evaluate synthesized attributes of n

}

Y.N. Srikant Semantic Analysis

Example of LAG - 1

1. DList → D | DList ; D 2. D → T L {L.type ↓:= T .type ↑}
3. T → int {T .type ↑:= integer} 4. T → float {T .type ↑:= real}
5. L→ ID {ID.type ↓:= L.type ↓}
6. L1 → L2 , ID {L2.type ↓:= L1.type ↓; ID.type ↓:= L1.type ↓}
7. ID → identifier {ID.name ↑:= identifier .name ↑}

Y.N. Srikant Semantic Analysis

Example of Non-LAG

An AG for associating type information with names in
variable declarations
AI(L) = AI(ID) = {type ↓: {integer , real}}
AS(T) = {type ↑: {integer , real}}
AS(ID) = AS(identifier) = {name ↑: string}

1 DList → D | DList ; D
2 D → L : T {L.type ↓:= T .type ↑}
3 T → int {T .type ↑:= integer}
4 T → float {T .type ↑:= real}
5 L→ ID {ID.type ↓:= L.type ↓}
6 L1 → L2 , ID {L2.type ↓:= L1.type ↓; ID.type ↓:= L1.type ↓}
7 ID → identifier {ID.name ↑:= identifier .name ↑}

Example: a,b,c: int; x,y: float
a,b, and c are tagged with type integer
x,y, and z are tagged with type real

Y.N. Srikant Semantic Analysis

Example of LAG - 2

1 S −→ E {E .symtab ↓:= φ;S.val ↑:= E .val ↑}
2 E1 −→ E2 + T {E2.symtab ↓:= E1.symtab ↓;

E1.val ↑:= E2.val ↑ +T .val ↑;T .symtab ↓:= E1.symtab ↓}
3 E −→ T {T .symtab ↓:= E .symtab ↓;E .val ↑:= T .val ↑}
4 E1 −→ let id = E2 in (E3)
{E1.val ↑:= E3.val ↑;E2.symtab ↓:= E1.symtab ↓;
E3.symtab ↓:= E1.symtab ↓ \{id .name ↑→ E2.val ↑}}
Note: changing the above production to:
E1 → return (E3) with id = E2 (with the same
computation rules) changes this AG into non-LAG

5 T1 −→ T2 ∗ F {T1.val ↑:= T2.val ↑ ∗F .val ↑;
T2.symtab ↓:= T 1.symtab ↓;F .symtab ↓:= T1.symtab ↓}

6 T −→ F {T .val ↑:= F .val ↑;F .symtab ↓:= T .symtab ↓}
7 F −→ (E) {F .val ↑:= E .val ↑;E .symtab ↓:= F .symtab ↓}
8 F −→ number {F .val ↑:= number .val ↑}
9 F −→ id {F .val ↑:= F .symtab ↓ [id .name ↑]}

Y.N. Srikant Semantic Analysis

Example of LAG - 2, Evaluation Order

Y.N. Srikant Semantic Analysis

Attributed Translation Grammar

Apart from attribute computation rules, some program
segment that performs either output or some other side
effect-free computation is added to the AG
Examples are: symbol table operations, writing generated
code to a file, etc.
As a result of these action code segments, evaluation
orders may be constrained
Such constraints are added to the attribute dependence
graph as implicit edges
These actions can be added to both SAGs and LAGs
(making them, SATG and LATG resp.)
Our discussion of semantic analysis will use LATG(1-pass)
and SATG

Y.N. Srikant Semantic Analysis

Example 1: SATG for Desk Calculator

%%
lines: lines expr ’\n’ {printf("%g\n",$2);}

| lines ’\n’
| /* empty */
;

expr : expr ’+’ expr {$$ = $1 + $3;}
/*Same as: expr(1).val = expr(2).val+expr(3).val */

| expr ’-’ expr {$$ = $1 - $3;}
| expr ’*’ expr {$$ = $1 * $3;}
| expr ’/’ expr {$$ = $1 / $3;}
| ’(’ expr ’)’ {$$ = $2;}
| NUMBER /* type double */
;

%%

Y.N. Srikant Semantic Analysis

Example 2: SATG for Modified Desk Calculator

%%
lines: lines expr ’\n’ {printf("%g\n",$2);}

| lines ’\n’
| /* empty */
;

expr : NAME ’=’ expr {sp = symlook($1);
sp->value = $3; $$ = $3;}

| NAME {sp = symlook($1);$$ = sp->value;}
| expr ’+’ expr {$$ = $1 + $3;}
| expr ’-’ expr {$$ = $1 - $3;}
| expr ’*’ expr {$$ = $1 + $3;}
| expr ’/’ expr {$$ = $1 - $3;}
| ’(’ expr ’)’ {$$ = $2;}
| NUMBER /* type double */
;

%%

Y.N. Srikant Semantic Analysis

Example 3: LAG, LATG, and SATG

LAG (notice the changed grammar)

1. Decl → DList$ 2. DList → D D′ 3. D′ → ε |;DList
4. D → T L {L.type ↓:= T .type ↑}
5. T → int {T .type ↑:= integer} 6. T → float {T .type ↑:= real}
7. L→ ID L′{ID.type ↓:= L.type ↓; L′.type ↓:= L.type ↓; }
8. L′ → ε | ,L {L.type ↓:= L′.type ↓; }
9. ID → identifier {ID.name ↑:= identifier .name ↑}

LATG (notice the changed grammar)

1. Decl → DList$ 2. DList → D D′ 3. D′ → ε |;DList
4. D → T {L.type ↓:= T .type ↑} L
5. T → int {T .type ↑:= integer} 6. T → float {T .type ↑:= real}
7. L→ id {insert_symtab(id .name ↑,L.type ↓);

L′.type ↓:= L.type ↓; } L′

8. L′ → ε | , {L.type ↓:= L′.type ↓; } L

Y.N. Srikant Semantic Analysis

Example - 3: LATG Dependence Example

Y.N. Srikant Semantic Analysis

Example 3: LAG, LATG, and SATG (contd.)

SATG

1. Decl → DList$
2. DList → D | DList ; D
3. D → T L {patchtype(T .type ↑,L.namelist ↑); }
4. T → int {T .type ↑:= integer}
5. T → float {T .type ↑:= real}
6. L→ id {sp = insert_symtab(id .name ↑);

L.namelist ↑= makelist(sp); }
7. L1 → L2 , id {sp = insert_symtab(id .name ↑);

L1.namelist ↑= append(L2.namelist ↑, sp); }

Y.N. Srikant Semantic Analysis

Integrating LATG into RD Parser - 1

/* Decl --> DList $*/
void Decl(){Dlist();

if mytoken.token == EOF return
else error(); }

/* DList --> D D’ */
void DList(){D(); D’(); }
/* D --> T {L.type := T.type} L */
void D(){vartype type = T(); L(type); }
/* T --> int {T.type := integer}

| float {T.type := real} */
vartype T(){if mytoken.token == INT

{get_token(); return(integer);}
else if mytoken.token == FLOAT

{get_token(); return(real); }
else error();

}

Y.N. Srikant Semantic Analysis

Integrating LATG into RD Parser - 2

/* L --> id {insert_symtab(id.name, L.type);
L’.type := L.type} L’ */

void L(vartype type){if mytoken.token == ID
{insert_symtab(mytoken.value, type);
get_token(); L’(type); } else error();

}
/* L’ --> empty | ,{L.type := L’.type} L */
void L’(vartype type){if mytoken.token == COMMA

{get_token(); L(type);} else ;
}
/* D’ --> empty | ; DList */
void D’(){if mytoken.token == SEMICOLON

{get_token(); DList(); } else ; }

Y.N. Srikant Semantic Analysis

Example 4: SATG with Scoped Names

1. S --> E { S.val := E.val }
2. E --> E + T { E(1).val := E(2).val + T.val }
3. E --> T { E.val := T.val }
/* The 3 productions below are broken parts

of the prod.: E --> let id = E in (E) */
4. E --> L B { E.val := B.val; }
5. L --> let id = E { //scope initialized to 0;

scope++; insert (id.name, scope, E.val) }
6. B --> in (E) { B.val := E.val;

delete_entries (scope); scope--; }
7. T --> T * F { T(1).val := T(2).val * F.val }
8. T --> F { T.val := F.val }
9. F --> (E) { F.val := E.val }
10. F --> number { F.val := number.val }
11. F --> id { F.val := getval (id.name, scope) }

Y.N. Srikant Semantic Analysis

LATG for Sem. Analysis of Variable Declarations - 1

1 Decl → DList$
2 DList → D | D ; DList
3 D → T L
4 T → int | float
5 L→ ID_ARR | ID_ARR , L
6 ID_ARR → id | id [DIMLIST] | id BR_DIMLIST
7 DIMLIST → num | num, DIMLIST
8 BR_DIMLIST → [num] | [num] BR_DIMLIST

Note: array declarations have two possibilities
int a[10,20,30]; float b[25][35];

Y.N. Srikant Semantic Analysis

LATG for Sem. Analysis of Variable Declarations - 2

The grammar is not LL(1) and hence an LL(1) parser
cannot be built from it.
We assume that the parse tree is available and that
attribute evaluation is performed over the parse tree
Modifications to the CFG to make it LL(1) and the
corresponding changes to the AG are left as exercises
The attributes and their rules of computation for
productions 1-4 are as before and we ignore them
We provide the AG only for the productions 5-7; AG for rule
8 is similar to that of rule 7
Handling constant declarations is similar to that of handling
variable declarations

Y.N. Srikant Semantic Analysis

Identifier Type Information in the Symbol Table

Y.N. Srikant Semantic Analysis

Semantic Analysis with Attribute Grammars
Part 4

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Semantic Analysis

Outline of the Lecture

Introduction (covered in lecture 1)
Attribute grammars (covered in lectures 2 and 3)
Attributed translation grammars (covered in lecture 3)
Semantic analysis with attributed translation grammars

Y.N. Srikant Semantic Analysis

LATG for Sem. Analysis of Variable Declarations - 1

1 Decl → DList$
2 DList → D | D ; DList
3 D → T L
4 T → int | float
5 L→ ID_ARR | ID_ARR , L
6 ID_ARR → id | id [DIMLIST] | id BR_DIMLIST
7 DIMLIST → num | num, DIMLIST
8 BR_DIMLIST → [num] | [num] BR_DIMLIST

Y.N. Srikant Semantic Analysis

LATG for Sem. Analysis of Variable Declarations - 2

The grammar is not LL(1) and hence an LL(1) parser
cannot be built from it.
We assume that the parse tree is available and that
attribute evaluation is performed over the parse tree
Modifications to the CFG to make it LL(1) and the
corresponding changes to the AG are left as exercises
The attributes and their rules of computation for
productions 1-4 are as before and we ignore them
We provide the AG only for the productions 5-7; AG for rule
8 is similar to that of rule 7
Handling constant declarations is similar to that of handling
variable declarations

Y.N. Srikant Semantic Analysis

Identifier Type Information in the Symbol Table

Y.N. Srikant Semantic Analysis

LATG for Sem. Analysis of Variable Declarations - 3

1 L1 → {ID_ARR.type↓ := L1.type↓ } ID_ARR ,
{L2.type↓ := L1.type↓;} L2

2 L→{ID_ARR.type ↓:= L.type ↓} ID_ARR
3 ID_ARR → id

{ search_symtab(id.name↑, found);
if (found) error(‘identifier already declared’);
else { typerec* t; t->type := simple;

t->eletype := ID_ARR.type↓;
insert_symtab(id.name↑, t);}

}

Y.N. Srikant Semantic Analysis

LATG for Sem. Analysis of Variable Declarations - 4

4 ID_ARR → id [DIMLIST]
{ search ...; if (found) ...;

else { typerec* t; t->type := array;
t->eletype := ID_ARR.type↓;
t->dimlist_ptr := DIMLIST.ptr↑;
insert_symtab(id.name↑, t)}

}
5 DIMLIST → num

{DIMLIST.ptr↑ := makelist(num.value↑)}
6 DIMLIST1 → num, DIMLIST2

{DIMLIST1.ptr ↑ := append(num.value↑, DIMLIST2.ptr ↑)}

Y.N. Srikant Semantic Analysis

Storage Offset Computation for Variables

The compiler should compute
the offsets at which variables and constants will be stored
in the activation record (AR)

These offsets will be with respect to the pointer pointing to
the beginning of the AR
Variables are usually stored in the AR in the declaration
order
Offsets can be easily computed while performing semantic
analysis of declarations
Example: float c; int d[10]; float e[5,15];
int a,b;
The offsets are: c-0, d-8, e-48, a-648, b-652,
assuming that int takes 4 bytes and float takes 8 bytes

Y.N. Srikant Semantic Analysis

LATG for Storage Offset Computation

1 Decl → DList$
Decl → { DList.inoffset↓ := 0; } DList$

2 DList → D
DList → { D.inoffset↓ := DList.inoffset↓; } D

3 DList1 → D ; DList2
DList1 → { D.inoffset↓ := DList1.inoffset↓; } D ;

{ DList2.inoffset↓ := D.outoffset↑;} DList2
4 D → T L

D → T { L.inoffset↓ := D.inoffset↓; L.typesize↓ := T.size↑;}
L { D.outoffset↑ := L.outoffset↑;}

5 T → int | float
T → int {T.size↑ := 4; } | float {T.size↑ := 8; }

Y.N. Srikant Semantic Analysis

Storage Offset Example

Y.N. Srikant Semantic Analysis

LATG for Storage Offset Computation(contd.)

6 L→ ID_ARR
L→ { ID_ARR.inoffset↓ := L.inoffset↓;

ID_ARR.typesize↓ := L.typesize↓; }
ID_ARR { L.outoffset↑ := ID_ARR.outoffset↑; }

7 L1 → ID_ARR , L2
L1 → { ID_ARR.inoffset↓ := L1.inoffset↓;

ID_ARR.typesize↓ := L1.typesize↓; }
ID_ARR , { L2.inoffset↓ := ID_ARR.outoffset↑;

L2.typesize↓ := L1.typesize↓; }
L2{ L1.outoffset↑ := L2.outoffset↑; }

8 ID_ARR → id
ID_ARR → id { insert_offset(id.name, ID_ARR.inoffset↓);

ID_ARR.outoffset↑ := ID_ARR.inoffset↓ +
ID_ARR.typesize↓ }

Y.N. Srikant Semantic Analysis

Storage Offset Example

Y.N. Srikant Semantic Analysis

LATG for Storage Offset Computation(contd.)

9 ID_ARR → id [DIMLIST]
ID_ARR → id { insert_offset(id.name, ID_ARR.inoffset↓);

[DIMLIST] ID_ARR.outoffset↑ :=
ID_ARR.inoffset↓ + ID_ARR.typesize↓ × DIMLIST.num }

10 DIMLIST → num { DIMLIST.num↑ := num.value↑; }
11 DIMLIST1 → num , DIMLIST2

{ DIMLIST1.num↑ := DIMLIST2.num↑ × num.value↑; }
12 ID_ARR → id BR_DIMLIST
13 BR_DIMLIST → [num] | [num] BR_DIMLIST

Processing productions 12 and 13 is similar to that of the
previous productions, 9-11

Y.N. Srikant Semantic Analysis

Storage Offset Example

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Statements and Expr. - 1

1. S → if E then S | if E then S else S
2. S → while E do S
3. S → L := E
4. L→ id | id [ELIST]
5. ELIST → E | ELIST , E
6. E → E + E | E − E | E ∗ E | E/E | −E | (E) | L | num
7. E → E ||E | E&&E |∼ E
8. E → E < E | E > E | E == E

We assume that the parse tree is available and that
attribute evaluation is performed over the parse tree
The grammar above is ambiguous and changing it
appropriately to suit parsing is necessary
Actions for similar rules are skipped (to avoid repetition)

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Statements and Expr. - 2

All attributes are synthesized and therefore ↑ symbol is dropped
(for brevity)

E , L, and num: type: {integer, real, boolean, errortype}
/* Note: num will also have value as an attribute */
ELIST : dimnum: integer

1 S → IFEXP then S
2 IFEXP → if E {if (E.type 6= boolean)

error(‘boolean expression expected’);}
3 S →WHILEEXP do S
4 WHILEEXP → while E {if (E.type 6= boolean)

error(‘boolean expression expected’);}

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Statements and Expr. - 3

5 S → L := E
{if (L.type 6= errortype && E.type 6= errortype)

if ∼coercible(L.type, E.type)
error(‘type mismatch of operands

in assignment statement’);}

int coercible(types type_a, types type_b){
if ((type_a == integer || type_a == real) &&

(type_b == integer || type_b == real))
return 1; else return 0;

}

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Statements and Expr. - 4

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Statements and Expr. - 5

6 E → num {E.type := num.type;}
7 L→ id

{ typerec* t; search_symtab(id.name, missing, t);
if (missing) { error(‘identifier not declared’);

L.type := errortype;}
else if (t->type == array)

{ error(‘cannot assign whole arrays’);
L.type := errortype;}

else L.type := t->eletype;}

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Statements and Expr. - 6

8 L→ id [ELIST]

{ typerec* t; search_symtab(id.name, missing, t);
if (missing) { error(‘identifier not declared’);

L.type := errortype}
else { if (t->type 6= array)

{ error(‘identifier not of array type’);
L.type := errortype;}

else { find_dim(t->dimlist_ptr, dimnum);
if (dimnum 6= ELIST.dimnum)

{ error(‘mismatch in array
declaration and use; check index list’);

L.type := errortype;}
else L.type := t->eletype;}

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Statements and Expr. - 7

9 ELIST → E {If (E.type 6= integer)
error(‘illegal subscript type’); ELIST.dimnum := 1;}

10 ELIST1 → ELIST2 , E {If (E.type 6= integer)
error(‘illegal subscript type’);

ELIST1.dimnum := ELIST2.dimnum+1;}
11 E1 → E2 + E3

{if (E2.type 6= errortype && E3.type 6= errortype)
if (∼coercible(E2.type, E3.type)||
∼(compatible_arithop(E2.type, E3.type))
{error(‘type mismatch in expression’);

E1.type := errortype;}
else E1.type := compare_types(E2.type, E3.type);

else E1.type := errortype;}

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Statements and Expr. - 8

int compatible_arithop(types type_a, types type_b){
if ((type_a == integer || type_a == real) &&

(type_b == integer || type_b == real))
return 1; else return 0;

}
types compare_types(types type_a, types type_b){

if (type_a == integer && type_b == integer)
return integer;

else if (type_a == real && type_b == real)
return real;

else if (type_a == integer && type_b == real)
return real;

else if (type_a == real && type_b == integer)
return real;

else return error_type;
}

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Statements and Expr. - 9

12 E1 → E2 || E3
{if (E2.type 6= errortype && E3.type 6= errortype)

if ((E2.type == boolean || E2.type == integer) &&
(E3.type == boolean || E3.type == integer))
E1.type := boolean;

else {error(‘type mismatch in expression’);
E1.type := errortype;}

else E1.type := errortype;}
13 E1 → E2 < E3

{if (E2.type 6= errortype && E3.type 6= errortype)
if (∼coercible(E2.type, E3.type)||
∼(compatible_arithop(E2.type, E3.type))
{error(‘type mismatch in expression’);

E1.type := errortype;}
else E1.type := boolean;

else E1.type := errortype;}

Y.N. Srikant Semantic Analysis

Semantic Analysis with Attribute Grammars
Part 5

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Semantic Analysis

Outline of the Lecture

Introduction (covered in lecture 1)
Attribute grammars (covered in lectures 2 and 3)
Attributed translation grammars (covered in lecture 3)
Semantic analysis with attributed translation grammars

Y.N. Srikant Semantic Analysis

Symbol Table Data Structure

A symbol table (in a compiler) stores names of all kinds
that occur in a program along with information about them

Type of the name (int, float, function, etc.), level at which it
has been declared, whether it is a declared parameter of a
function or an ordinary variable, etc.
In the case of a function, additional information about the
list of parameters and their types, local variables and their
types, result type, etc., are also stored

It is used during semantic analysis, optimization, and code
generation
Symbol table must be organized to enable a search based
on the level of declaration
It can be based on:

Binary search tree, hash table, array, etc.

Y.N. Srikant Semantic Analysis

A Simple Symbol Table - 1

A very simple symbol table (quite restricted and not really
fast) is presented for use in the semantic analysis of
functions
An array, func_name_table stores the function name
records, assuming no nested function definitions
Each function name record has fields: name, result type,
parameter list pointer, and variable list pointer
Parameter and variable names are stored as lists
Each parameter and variable name record has
fields: name, type, parameter-or-variable tag, and level of
declaration (1 for parameters, and 2 or more for variables)

Y.N. Srikant Semantic Analysis

A Simple Symbol Table - 2

Y.N. Srikant Semantic Analysis

A Simple Symbol Table - 3

Two variables in the same function, with the same name
but different declaration levels, are treated as different
variables (in their respective scopes)
If a variable (at level > 2) and a parameter have the same
name, then the variable name overrides the parameter
name (only within the corresponding scope)
However, a declaration of a variable at level 2, with the
same name as a parameter, is flagged as an error
The above two cases must be checked carefully
A search in the symbol table for a given name must always
consider the names with the declaration levels l, l-1, ... , 2,
in that order, where l is the current level

Y.N. Srikant Semantic Analysis

A Simple Symbol Table - 4

Y.N. Srikant Semantic Analysis

A Simple Symbol Table - 5

The global variable, active_func_ptr, stores a pointer to the
function name entry in func_name_table of the function
that is currently being compiled
The global variable, level, stores the current nesting level
of a statement block
The global variable, call_name_ptr, stores a pointer to the
function name entry in func_name_table of the function
whose call is being currently processed
The function search_func(n, found , fnptr) searches the
function name table for the name n and returns found as T
or F; if found, it returns a pointer to that entry in fnptr

Y.N. Srikant Semantic Analysis

A Simple Symbol Table - 6

The function search_param(p, fnptr , found ,pnptr)
searches the parameter list of the function at fnptr for the
name p, and returns found as T or F; if found, it returns a
pointer to that entry in the parameter list, in pnptr
The function search_var(v , fnptr , l , found , vnptr) searches
the variable list of the function at fnptr for the name v at
level l or lower, and returns found as T or F; if found, it
returns a pointer to that entry in the variable list, in vnptr .
Higher levels are preferred
The other symbol table routines will be explained during
semantic analysis

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Functions and Calls - 1

1 FUNC_DECL→ FUNC_HEAD { VAR_DECL BODY }
2 FUNC_HEAD → RES_ID (DECL_PLIST)

3 RES_ID → RESULT id
4 RESULT → int | float | void
5 DECL_PLIST → DECL_PL | ε
6 DECL_PL→ DECL_PL , DECL_PARAM | DECL_PARAM
7 DECL_PARAM → T id
8 VAR_DECL→ DLIST | ε
9 DLIST → D | DLIST ; D

10 D → T L
11 T → int | float
12 L→ id | L , id

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Functions and Calls - 2

13 BODY → { VAR_DECL STMT_LIST }
14 STMT_LIST → STMT _LIST ; STMT | STMT
15 STMT → BODY | FUNC_CALL | ASG | /* others */

/* BODY may be regarded as a compound statement */
/* Assignment statement is being singled out */
/* to show how function calls can be handled */

16 ASG→ LHS := E
17 LHS → id /* array expression for exercises */
18 E → LHS | FUNC_CALL |/* other expressions */
19 FUNC_CALL→ id (PARAMLIST)

20 PARAMLIST → PLIST | ε
21 PLIST → PLIST , E | E

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Functions and Calls - 3

1 FUNC_DECL→ FUNC_HEAD { VAR_DECL BODY }
{delete_var_list(active_func_ptr, level);
active_func_ptr := NULL; level := 0;}

2 FUNC_HEAD → RES_ID (DECL_PLIST) {level := 2}
3 RES_ID → RESULT id

{ search_func(id.name, found, namptr);
if (found) error(‘function already declared’);
else enter_func(id.name, RESULT.type, namptr);

active_func_ptr := namptr; level := 1}
4 RESULT → int {action1} | float {action2}

| void {action3}
{action 1:} {RESULT.type := integer}
{action 2:} {RESULT.type := real}
{action 3:} {RESULT.type := void}

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Functions and Calls - 4

5 DECL_PLIST → DECL_PL | ε
6 DECL_PL→ DECL_PL , DECL_PARAM | DECL_PARAM
7 DECL_PARAM → T id

{search_param(id.name, active_func_ptr, found, pnptr);
if (found) {error(‘parameter already declared’)}
else {enter_param(id.name, T.type, active_func_ptr)}

8 T → int {T.type := integer} | float {T.type := real}
9 VAR_DECL→ DLIST | ε

10 DLIST → D | DLIST ; D
/* We show the analysis of simple variable declarations.
Arrays can be handled using methods desribed earlier.
Extension of the symbol table and SATG to handle arrays
is left as an exercise. */

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Functions and Calls - 5

11 D → T L {patch_var_type(T.type, L.list, level)}
/* Patch all names on L.list with declaration level, level ,
with T.type */

12 L→ id
{search_var(id.name, active_func_ptr, level, found, vn);
if (found && vn -> level == level)

{error(‘variable already declared at the same level’);
L.list := makelist(NULL);}

else if (level==2)
{search_param(id.name, active_func_ptr, found, pn);
if (found) {error(‘redeclaration of parameter as variable’);

L.list := makelist(NULL);}
} /* end of if (level == 2) */
else {enter_var(id.name, level, active_func_ptr, vnptr);

L.list := makelist(vnptr);}}

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Functions and Calls - 6

13 L1 → L2 , id
{search_var(id.name, active_func_ptr, level, found, vn);
if (found && vn -> level == level)

{error(‘variable already declared at the same level’);
L1.list := L2.list;}

else if (level==2)
{search_param(id.name, active_func_ptr, found, pn);
if (found) {error(‘redclaration of parameter as variable’);

L1.list := L2.list;}
} /* end of if (level == 2) */
else {enter_var(id.name, level, active_func_ptr, vnptr);

L1.list := append(L2.list, vnptr);}}
14 BODY → ‘{’{level++;} VAR_DECL STMT_LIST

{delete_var_list(active_func_ptr, level); level- -;}‘}’
15 STMT_LIST → STMT _LIST ; STMT | STMT
16 STMT → BODY | FUNC_CALL | ASG | /* others */

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Functions and Calls - 7

17 ASG→ LHS := E
{if (LHS.type 6= errortype && E.type 6= errortype)

if (LHS.type 6= E.type) error(‘type mismatch of
operands in assignment statement’)}

18 LHS → id
{search_var(id.name, active_func_ptr, level, found, vn);
if (∼found)
{search_param(id.name, active_func_ptr, found, pn);

if (∼found){ error(‘identifier not declared’);
LHS.type := errortype}

else LHS.type := pn -> type}
else LHS.type := vn -> type}

19 E → LHS {E.type := LHS.type}
20 E → FUNC_CALL {E.type := FUNC_CALL.type}

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Functions and Calls - 8

21 FUNC_CALL→ id (PARAMLIST)
{ search_func(id.name, found, fnptr);
if (∼found) {error(‘function not declared’);

call_name_ptr := NULL;
FUNC_CALL.type := errortype;}

else {FUNC_CALL.type := get_result_type(fnptr);
call_name_ptr := fnptr;

if (call_name_ptr.numparam 6= PARAMLIST.pno)
error(‘mismatch in mumber of parameters

in declaration and call’);}
22 PARAMLIST → PLIST {PARAMLIST.pno := PLIST.pno }

| ε {PARAMLIST.pno := 0 }

Y.N. Srikant Semantic Analysis

SATG for Sem. Analysis of Functions and Calls - 9

23 PLIST → E {PLIST.pno := 1;
check_param_type(call_name_ptr, 1, E.type, ok);
if (∼ok) error(‘parameter type mismatch

in declaration and call’);}
24 PLIST1 → PLIST2 , E {PLIST1.pno := PLIST2.pno + 1;

check_param_type(call_name_ptr, PLIST2.pno + 1,
E.type, ok);

if (∼ok) error(‘parameter type mismatch
in declaration and call’);}

Y.N. Srikant Semantic Analysis

Semantic Analysis of Arrays

Multi-dimensional arrays
length of each dimension must be stored in the symbol
table and connected to the array name, while processing
declarations
C allows assignment of array slices. Therefore, size and
type of slices must be checked during semantic analysis of
assignments
int a[10][20], b[20], c[10][10];
a[5] = b; c[7] = a[8];
In the above code fragment, the first assignment is valid,
but the second one is not
The above is called structure equivalence and it is different
from name equivalance

Y.N. Srikant Semantic Analysis

Semantic Analysis of Structs

Names inside structs belong to a higher level
Equivalance of structs is based on name equivalance and
not on structure equivalence
struct {int a,b; float c[10]; char d} x,y;
struct {char d; float c[10]; int a,b} a,b;
x = y; a = x;

In the code fragment above
In the second struct, the fields a, b of the struct are
different from the struct variables a and b
The assignment x = y; is valid but a = x; is not valid,
even though both structs have the same fields (but
permuted)

For a struct variable, an extra pointer pointing to the
fields of the struct variable, along with their levels, can be
maintained in the symbol table

Y.N. Srikant Semantic Analysis

Operator Overloading

Operators such as ‘+’ are usually overloaded in most
languages

For example, the same symbol ‘+’ is used with integers and
reals
Programmers can define new functions for the existing
operators in C++
This is operator overloading
Examples are defining ‘+’ on complex numbers, rational
numbers, or time

Complex operator+(const Complex& lhs,
const Complex& rhs)

{ Complex temp = lhs;
temp.real += rhs.real;
temp.imaginary += rhs.imaginary;
return temp;

}

Y.N. Srikant Semantic Analysis

Function Overloading

C++ also allows function overloading
Overloaded functions with the same name (or same
operator)

return results with different types, or
have different number of parameters, or
differ in parameter types

The meaning of overloaded operators (in C++) with built-in
types as parameters cannot be redefined

E.g., ‘+’ on integers cannot be overloaded
Further, overloaded ‘+’ must have exactly two operands

Both operator and function overloading are resolved at
compile time
Either of them is different from virtual functions or function
overriding

Y.N. Srikant Semantic Analysis

Function Overloading Example

// area of a square
int area(int s) { return s*s; }

// area of a rectangle
int area(int l, int b) { return l*b; }

// area of a circle
float area(float radius)
{ return 3.1416*radius*radius; }

int main()
{ std::cout << area(10);

std::cout << area(12, 8);
std::cout << area(2.5);

}

Y.N. Srikant Semantic Analysis

Implementing Operator Overloading

A list of operator functions along with their parameter types
is needed
This list may be stored in a hash table, with the hash
function designed to take the operator and its parameter
types into account
While handling a production such as E → E1 + E2, the
above hash table is searched with the signature
+(E1.type,E2.type)
If there is only one exact match (with the same operand
types), then the overloading is resolved in favor of the
match
In case there is more than one exact match, an error is
flagged
The situation gets rather complicated in C++, due to
possible conversions of operand types (char to int, int to
float, etc.)

Y.N. Srikant Semantic Analysis

Implementing Function Overloading

The symbol table should store multiple instances of the
same function name along with their parameter types (and
other information)
While resolving a function call such as, test(a,b, c), all the
overloaded functions with the name test are collected and
the closest possible match is chosen

Suppose the parameters a,b, c are all of int type
And the available overloaded functions are:
int test(int a, int b, float c) and
int test(float a, int b, float c)
In this case, we may choose the first one because it entails
only one conversion from int to float (faster)

If there is no match (or more than one match) even after
conversions, an error is flagged

Y.N. Srikant Semantic Analysis

SATG for 2-pass Sem. Analysis of Func. and Calls

FUNC_DECL→ FUNC_HEAD { VAR_DECL BODY}
BODY → { VAR_DECL STMT_LIST }

Variable declarations appear stricty before their use

FUNC_DECL→
FUNC_HEAD { VAR_DECL BODY VAR_DECL }

BODY → { VAR_DECL STMT_LIST VAR_DECL }
permits variable declarations before and after their use

Semantic analysis in this case requires two passes
Symbol table is constructed in the 1st pass
Declarations are all processed in the 1st pass
1st pass can be integrated with LR-parsing during which a
parse tree is built
Statements are analyzed in the 2nd pass
Sem. errors in statements are reported only in the 2nd pass
This effectively presents all the variable declarations before
their use
2nd pass can be made over the parse tree

Y.N. Srikant Semantic Analysis

Symbol Table for a 2-pass Semantic Analyzer

The symbol table has to be persistent
Cannot be destroyed after the block/function is processed
in pass 1
Should be stored in a form that can be accessed according
to levels in pass 2

Y.N. Srikant Semantic Analysis

Symbol Table for a 2-pass Semantic Analyzer(contd.)

The symbol table(ST) is indexed by block number
In the previous version of the ST, there were no separate
entries for blocks
The surrounder block number (surr.blk.num) is the block
number of the enclosing block
All the blocks below a function entry f in the ST, upto the
next function entry, belong to the function f
To get the name of the parent function for a given block b,
we go up table using surrounder block numbers until the
surrounder block number becomes zero

Y.N. Srikant Semantic Analysis

Symbol Table for a 2-pass Semantic Analyzer(contd.)

Y.N. Srikant Semantic Analysis

Symbol Table for a 2-pass Semantic Analyzer(contd.)

Block numbers begin from 1, and a counter last_blk_num
generates new block numbers by incrementing itself
curr_blk_num is the currently open block
While opening a new block, curr_blk_num becomes its
surrounder block number
Similarly, while closing a block, its surr.blk.num is copied
into curr_blk_num

Y.N. Srikant Semantic Analysis

Symbol Table for a 2-pass Semantic Analyzer(contd.)

Apart from active_func_ptr, and call_name_ptr, we also
need an active_blk_ptr
level remains the same (nesting level of the current block)
search_func(n, found , fnptr) remains the same, except that
it searches entries corresponding to functions only (with
surr .blk .num = 0)
search_param(p, fnptr , found ,pnptr) remains the same
search_var(v , fnptr , l , found , vnptr) is similar to the old
one, but the method of searching is now different

The variables of each block are stored separately under
different block numbers
The parameter level is now replaced by active_blk_ptr
The search starts from active_blk_ptr and proceeds
upwards using surrounder block numbers until the
enclosing function is reached (with surr .blk .num = 0)

Y.N. Srikant Semantic Analysis

Intermediate Code Generation - Part 1

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Intermediate Code Generation

Outline of the Lecture

Introduction
Different types of intermediate code
Intermediate code generation for various constructs

Y.N. Srikant Intermediate Code Generation

Compiler Overview

Y.N. Srikant Intermediate Code Generation

Compilers and Interpreters

Compilers generate machine code, whereas interpreters
interpret intermediate code
Interpreters are easier to write and can provide better error
messages (symbol table is still available)
Interpreters are at least 5 times slower than machine code
generated by compilers
Interpreters also require much more memory than machine
code generated by compilers
Examples: Perl, Python, Unix Shell, Java, BASIC, LISP

Y.N. Srikant Intermediate Code Generation

Why Intermediate Code? - 1

Y.N. Srikant Intermediate Code Generation

Why Intermediate Code? - 2

While generating machine code directly from source code
is possible, it entails two problems

With m languages and n target machines, we need to write
m front ends, m × n optimizers, and m × n code generators
The code optimizer which is one of the largest and
very-difficult-to-write components of a compiler, cannot be
reused

By converting source code to an intermediate code, a
machine-independent code optimizer may be written
This means just m front ends, n code generators and 1
optimizer

Y.N. Srikant Intermediate Code Generation

Different Types of Intermediate Code

Intermediate code must be easy to produce and easy to
translate to machine code

A sort of universal assembly language
Should not contain any machine-specific parameters
(registers, addresses, etc.)

The type of intermediate code deployed is based on the
application
Quadruples, triples, indirect triples, abstract syntax trees
are the classical forms used for machine-independent
optimizations and machine code generation
Static Single Assignment form (SSA) is a recent form and
enables more effective optimizations

Conditional constant propagation and global value
numbering are more effective on SSA

Program Dependence Graph (PDG) is useful in automatic
parallelization, instruction scheduling, and software
pipelining

Y.N. Srikant Intermediate Code Generation

Three-Address Code

Instructions are very simple
Examples: a = b + c, x = -y, if a > b goto L1

LHS is the target and the RHS has at most two sources
and one operator
RHS sources can be either variables or constants
Three-address code is a generic form and can be
implemented as quadruples, triples, indirect triples, tree or
DAG
Example: The three-address code for a+b*c-d/(b*c)
is below

1 t1 = b*c
2 t2 = a+t1
3 t3 = b*c
4 t4 = d/t3
5 t5 = t2-t4

Y.N. Srikant Intermediate Code Generation

Implementations of 3-Address Code

Y.N. Srikant Intermediate Code Generation

Instructions in Three-Address Code - 1

1 Assignment instructions:
a = b biop c, a = uop b, and a = b (copy), where

biop is any binary arithmetic, logical, or relational operator
uop is any unary arithmetic (-, shift, conversion) or logical
operator (∼)
Conversion operators are useful for converting integers to
floating point numbers, etc.

2 Jump instructions:
goto L (unconditional jump to L),
if t goto L (it t is true then jump to L),
if a relop b goto L (jump to L if a relop b is true),
where

L is the label of the next three-address instruction to be
executed
t is a boolean variable
a and b are either variables or constants

Y.N. Srikant Intermediate Code Generation

Instructions in Three-Address Code - 2

3 Functions:
func begin <name> (beginning of the function),
func end (end of a function),
param p (place a value parameter p on stack),
refparam p (place a reference parameter p on stack),
call f, n (call a function f with n parameters),
return (return from a function),
return a (return from a function with a value a)

4 Indexed copy instructions:
a = b[i] (a is set to contents(contents(b)+contents(i)),
where b is (usually) the base address of an array
a[i] = b (i th location of array a is set to b)

5 Pointer assignments:
a = &b (a is set to the address of b, i.e., a points to b)
*a = b (contents(contents(a)) is set to contents(b))
a = *b (a is set to contents(contents(b)))

Y.N. Srikant Intermediate Code Generation

Intermediate Code - Example 1

C-Program

int a[10], b[10], dot_prod, i;
dot_prod = 0;
for (i=0; i<10; i++) dot_prod += a[i]*b[i];

Intermediate code

dot_prod = 0; | T6 = T4[T5]
i = 0; | T7 = T3*T6

L1: if(i >= 10)goto L2 | T8 = dot_prod+T7
T1 = addr(a) | dot_prod = T8
T2 = i*4 | T9 = i+1
T3 = T1[T2] | i = T9
T4 = addr(b) | goto L1
T5 = i*4 |L2:

Y.N. Srikant Intermediate Code Generation

Intermediate Code - Example 2

C-Program

int a[10], b[10], dot_prod, i; int* a1; int* b1;
dot_prod = 0; a1 = a; b1 = b;
for (i=0; i<10; i++) dot_prod += *a1++ * *b1++;

Intermediate code

dot_prod = 0; | b1 = T6
a1 = &a | T7 = T3*T5
b1 = &b | T8 = dot_prod+T7
i = 0 | dot_prod = T8

L1: if(i>=10)goto L2 | T9 = i+1
T3 = *a1 | i = T9
T4 = a1+1 | goto L1
a1 = T4 |L2:
T5 = *b1
T6 = b1+1

Y.N. Srikant Intermediate Code Generation

Intermediate Code - Example 3

C-Program (function)
int dot_prod(int x[], int y[]){
int d, i; d = 0;
for (i=0; i<10; i++) d += x[i]*y[i];
return d;

}
Intermediate code

func begin dot_prod | T6 = T4[T5]
d = 0; | T7 = T3*T6
i = 0; | T8 = d+T7

L1: if(i >= 10)goto L2 | d = T8
T1 = addr(x) | T9 = i+1
T2 = i*4 | i = T9
T3 = T1[T2] | goto L1
T4 = addr(y) |L2: return d
T5 = i*4 | func end

Y.N. Srikant Intermediate Code Generation

Intermediate Code - Example 3 (contd.)

C-Program (main)
main(){
int p; int a[10], b[10];
p = dot_prod(a,b);

}
Intermediate code

func begin main
refparam a
refparam b
refparam result
call dot_prod, 3
p = result
func end

Y.N. Srikant Intermediate Code Generation

Intermediate Code - Example 4

C-Program (function)

int fact(int n){
if (n==0) return 1;
else return (n*fact(n-1));

}

Intermediate code

func begin fact | T3 = n*result
if (n==0) goto L1 | return T3
T1 = n-1 | L1: return 1
param T1 | func end
refparam result |
call fact, 2 |

Y.N. Srikant Intermediate Code Generation

Code Templates for If-Then-Else Statement

Assumption: No short-circuit evaluation for E (i.e., no jumps
within the intermediate code for E)

If (E) S1 else S2
code for E (result in T)
if T≤ 0 goto L1 /* if T is false, jump to else part */
code for S1 /* all exits from within S1 also jump to L2 */
goto L2 /* jump to exit */

L1: code for S2 /* all exits from within S2 also jump to L2 */
L2: /* exit */

If (E) S
code for E (result in T)
if T≤ 0 goto L1 /* if T is false, jump to exit */
code for S /* all exits from within S also jump to L1 */

L1: /* exit */

Y.N. Srikant Intermediate Code Generation

Code Template for While-do Statement

Assumption: No short-circuit evaluation for E (i.e., no jumps
within the intermediate code for E)

while (E) do S
L1: code for E (result in T)

if T≤ 0 goto L2 /* if T is false, jump to exit */
code for S /* all exits from within S also jump to L1 */
goto L1 /* loop back */

L2: /* exit */

Y.N. Srikant Intermediate Code Generation

Translations for If-Then-Else Statement

Let us see the code generated for the following code fragment.
Ai are all assignments, and Ei are all expressions
if (E1) { if (E2) A1; else A2; }else A3; A4;
—————————————————-

1 code for E1 /* result in T1 */
10 if (T1 <= 0), goto L1 (61)

/* if T1 is false jump to else part */
11 code for E2 /* result in T2 */
35 if (T2 <= 0), goto L2 (43)

/* if T2 is false jump to else part */
36 code for A1
42 goto L3 (82)
43 L2: code for A2
60 goto L3 (82)
61 L1: code for A3
82 L3: code for A4

Y.N. Srikant Intermediate Code Generation

Translations for while-do Statement

Code fragment:
while (E1) do {if (E2) then A1; else A2;} A3;

1 L1: code for E1 /* result in T1 */
15 if (T1 <= 0), goto L2 (79)

/* if T1 is false jump to loop exit */
16 code for E2 /* result in T2 */
30 if (T2 <= 0), goto L3 (55)

/* if T2 is false jump to else part */
31 code for A1
54 goto L1 (1)/* loop back */
55 L3: code for A2
78 goto L1 (1)/* loop back */
79 L2: code for A3

Y.N. Srikant Intermediate Code Generation

SATG - Attributes

S.next, N.next: list of quads indicating where to jump;
target of jump is still undefined
IFEXP.falselist: quad indicating where to jump if the
expression is false; target of jump is still undefined
E.result: pointer to symbol table entry

All temporaries generated during intermediate code
generation are inserted into the symbol table
In quadruple/triple/tree representation, pointers to symbol
table entries for variables and temporaries are used in
place of names
However, textual examples will use names

Y.N. Srikant Intermediate Code Generation

SATG - Auxiliary functions/variables

nextquad: global variable containing the number of the next
quadruple to be generated
backpatch(list, quad_number): patches target of all ‘goto’
quads on the ‘list’ to ‘quad_number’
merge(list-1, list-2,...,list-n): merges all the lists supplied as
parameters
gen(‘quadruple’): generates ‘quadruple’ at position
‘nextquad’ and increments ‘nextquad’

In quadruple/triple/tree representation, pointers to symbol
table entries for variables and temporaries are used in
place of names
However, textual examples will use names

newtemp(temp-type): generates a temporary name of type
temp-type, inserts it into the symbol table, and returns the
pointer to that entry in the symbol table

Y.N. Srikant Intermediate Code Generation

SATG for If-Then-Else Statement

IFEXP → if E
{ IFEXP.falselist := makelist(nextquad);
gen(‘if E.result ≤ 0 goto __’); }

S → IFEXP S1; N else M S2
{ backpatch(IFEXP.falselist, M.quad);
S.next := merge(S1.next, S2.next, N.next); }

S → IFEXP S1;
{ S.next := merge(S1.next, IFEXP.falselist); }
N → ε
{ N.next := makelist(nextquad);
gen(‘goto __’); }

M → ε
{ M.quad := nextquad; }

Y.N. Srikant Intermediate Code Generation

Intermediate Code Generation - Part 2

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Intermediate Code Generation

Outline of the Lecture

Introduction (covered in part 1)
Different types of intermediate code (covered in part 1)
Intermediate code generation for various constructs

Y.N. Srikant Intermediate Code Generation

SATG for If-Then-Else Statement

IFEXP → if E
{ IFEXP.falselist := makelist(nextquad);
gen(‘if E.result ≤ 0 goto __’); }

S → IFEXP S1; N else M S2
{ backpatch(IFEXP.falselist, M.quad);
S.next := merge(S1.next, S2.next, N.next); }

S → IFEXP S1;
{ S.next := merge(S1.next, IFEXP.falselist); }
N → ε
{ N.next := makelist(nextquad);
gen(‘goto __’); }

M → ε
{ M.quad := nextquad; }

Y.N. Srikant Intermediate Code Generation

SATG for Other Statements

S → ‘{’ L ‘}’
{ S.next := L.next; }
S → A
{ S.next := makelist(nil); }
S → return E
{ gen(‘return E.result’); S.next := makelist(nil); }
L→ L1 ‘;’ M S
{ backpatch(L1.next, M.quad);

L.next := S.next; }
L→ S
{ L.next := S.next; }
When the body of a procedure ends, we perform the
following actions in addition to other actions:
{ backpatch(S.next, nextquad); gen(‘func end’); }

Y.N. Srikant Intermediate Code Generation

Translation Trace for If-Then-Else Statement

Ai are all assignments, and Ei are all expressions
if (E1) { if (E2) A1; else A2; }else A3; A4;
S ⇒ IFEXP S1; N1 else M1 S2
⇒∗ IFEXP1 IFEXP2 S21; N2 else M2 S22; N1 else M1 S2

1 Consider outer if-then-else
Code generation for E1

2 gen(‘if E1.result ≤ 0 goto __’)
on reduction by IFEXP1 → if E1
Remember the above quad address in IFEXP1.falselist

3 Consider inner if-then-else
Code generation for E2

4 gen(‘if E2.result ≤ 0 goto __’)
on reduction by IFEXP2 → if E2
Remember the above quad address in IFEXP2.falselist

Y.N. Srikant Intermediate Code Generation

Translation Trace for If-Then-Else Statement(contd.)

if (E1) { if (E2) A1; else A2; }else A3; A4;
S ⇒∗ IFEXP1 IFEXP2 S21; N2 else M2 S22; N1 else M1 S2
Code generated so far:

Code for E1; if E1.result ≤ 0 goto __ (on IFEXP1.falselist);
Code for E2; if E2.result ≤ 0 goto __ (on IFEXP2.falselist);

5 Code generation for S21

6 gen(‘goto __’), on reduction by N2 → ε
(remember in N2.next)

7 L1: remember in M2.quad, on reduction by M2 → ε

8 Code generation for S22

9 backpatch(IFEXP2.falselist, L1) (processing E2 == false)
on reduction by S1 → IFEXP2 S21 N2 else M2 S22
N2.next is not yet patched; put on S1.next

Y.N. Srikant Intermediate Code Generation

Translation Trace for If-Then-Else Statement(contd.)

if (E1) { if (E2) A1; else A2; }else A3; A4;
S ⇒ IFEXP S1; N1 else M1 S2
S ⇒∗ IFEXP1 IFEXP2 S21; N2 else M2 S22; N1 else M1 S2
Code generated so far:
Code for E1; if E1.result ≤ 0 goto __ (on IFEXP1.falselist)
Code for E2; if E2.result ≤ 0 goto L1
Code for S21; goto __ (on S1.next)
L1: Code for S22

10 gen(‘goto __’), on reduction by N1 → ε (remember in
N1.next)

11 L2: remember in M1.quad, on reduction by M1 → ε

12 Code generation for S2

13 backpatch(IFEXP.falselist, L2) (processing E1 == false)
on reduction by S → IFEXP S1 N1 else M1 S2
N1.next is merged with S1.next, and put on S.next

Y.N. Srikant Intermediate Code Generation

Translation Trace for If-Then-Else Statement(contd.)

if (E1) { if (E2) A1; else A2; }else A3; A4;
S ⇒∗ IFEXP1 IFEXP2 S21; N2 else M2 S22; N1 else M1 S2
L⇒∗ L1 ‘;’ M3 S4 ⇒∗ S3 ‘;’ M3 S4
Code generated so far (for S3/L1 above):

Code for E1; if E1.result ≤ 0 goto L2
Code for E2; if E2.result ≤ 0 goto L1
Code for S21; goto __ (on S3.next/L1.next)
L1: Code for S22
goto __ (on S3.next/L1.next)
L2: Code for S2

14 L3: remember in M3.quad, on reduction by M3 → ε

15 Code generation for S4

16 backpatch(L1.next, L3), on reduction by L→ L1 ‘;’ M3 S4

17 L.next is empty

Y.N. Srikant Intermediate Code Generation

Translation Trace for If-Then-Else Statement(contd.)

if (E1) { if (E2) A1; else A2; }else A3; A4;
S ⇒∗ IFEXP1 IFEXP2 S21; N2 else M2 S22; N1 else M1 S2
L⇒∗ L1 ‘;’ M3 S4 ⇒∗ S3 ‘;’ M3 S4

Final generated code

Code for E1; if E1.result ≤ 0 goto L2
Code for E2; if E2.result ≤ 0 goto L1
Code for S21; goto L3
L1: Code for S22
goto L3
L2: Code for S2
L3: Code for S4

Y.N. Srikant Intermediate Code Generation

SATG for While-do Statement

WHILEXEP → while M E
{ WHILEEXP.falselist := makelist(nextquad);
gen(‘if E.result ≤ 0 goto __’);
WHILEEXP.begin := M.quad; }

S →WHILEXEP do S1
{ gen(‘goto WHILEEXP.begin’);
backpatch(S1.next, WHILEEXP.begin);
S.next := WHILEEXP.falselist; }

M → ε (repeated here for convenience)
{ M.quad := nextquad; }

Y.N. Srikant Intermediate Code Generation

Code Template for Function Declaration and Call

Assumtion: No nesting of functions
result foo(parameter list){ variable declarations; Statement list; }
func begin foo
/* creates activation record for foo - */
/* - space for local variables and temporaries */
code for Statement list
func end /* releases activation record and return */

x = bar(p1,p2,p3);
code for evaluation of p1, p2, p3 (result in T1, T2, T3)
/* result is supposed to be returned in T4 */
param T1; param T2; param T3; refparam T4;
call bar, 4
/* creates appropriate access links, pushes return address */
/* and jumps to code for bar */
x = T4

Y.N. Srikant Intermediate Code Generation

SATG for Function Call

Assumtion: No nesting of functions

FUNC_CALL→ id {action 1} (PARAMLIST) {action 2}
{action 1:} {search_func(id.name, found, fnptr);

call_name_ptr := fnptr }
{action 2:}
{ result_var := newtemp(get_result_type(call_name_ptr));
gen(‘refparam result_var’);
/* Machine code for return a places a in result_var */
gen(‘call call_name_ptr, PARAMLIST.pno+1’); }

PARAMLIST → PLIST { PARAMLIST.pno := PLIST.pno }
PARAMLIST → ε {PARAMLIST.pno := 0 }
PLIST → E { PLIST.pno := 1; gen(‘param E.result’); }
PLIST1 → PLIST2 , E
{ PLIST1.pno := PLIST2.pno + 1; gen(‘param E.result’); }

Y.N. Srikant Intermediate Code Generation

SATG for Function Declaration

Assumtion: No nesting of functions

FUNC_DECL→ FUNC_HEAD { VAR_DECL BODY }
{ backpatch(BODY.next, nextquad);
gen(‘func end’);}

FUNC_HEAD → RESULT id (DECL_PLIST)
{ search_func(id.name, found, namptr);
active_func_ptr := namptr;
gen(‘func begin active_func_ptr’); }

Y.N. Srikant Intermediate Code Generation

1-D Representation of 3-D Array

Y.N. Srikant Intermediate Code Generation

Code Template for Expressions and Assignments

int a[10][20][35], b;
b = exp1;
code for evaluation of exp1 (result in T1)
b = T1
/* Assuming the array access to be, a[i][j][k] */
/* base address = addr(a), offset = (((i*n2)+j)*n3)+k)*ele_size */
a[exp2][exp3][exp4] = exp5;

10: code for exp2 (result in T2) | | 141: T8 = T7+T6
70: code for exp3 (result in T3) | | 142: T9 = T8*intsize
105: T4 = T2*20 | | 143: T10 = addr(a)
106: T5 = T4+T3 | | 144: code for exp5 (result in T11)
107: code for exp4 (result in T6)| | 186: T10[T9] = T11
140: T7 = T5*35

Y.N. Srikant Intermediate Code Generation

SATG for Expressions and Assignments

S → L := E
/* L has two attributes, L.place, pointing to the name of the

variable or temporary in the symbol table, and L.offset,
pointing to the temporary holding the offset into the array
(NULL in the case of a simple variable) */

{ if (L.offset == NULL) gen(‘L.place = E.result’);
else gen(‘L.place[L.offset] = E.result’);}

E → (E1) {E.result := E1.result; }
E → L { if (L.offset == NULL) E.result := L.place;

else { E.result := newtemp(L.type);
gen(‘E.result = L.place[L.offset]’); }

E → num { E.result := newtemp(num.type);
gen(‘E.result = num.value’); }

Y.N. Srikant Intermediate Code Generation

SATG for Expressions and Assignments (contd.)

E → E1 + E2
{ result_type := compatible_type(E1.type, E2.type);
E.result := newtemp(result_type);
if (E1.type == result_type) operand_1 := E1.result;
else if (E1.type == integer && result_type == real)

{ operand_1 := newtemp(real);
gen(‘operand_1 = cnvrt_float(E1.result); };

if (E2.type == result_type) operand_2 := E2.result;
else if (E2.type == integer && result_type == real)

{ operand_2 := newtemp(real);
gen(‘operand_2 = cnvrt_float(E2.result); };

gen(‘E.result = operand_1 + operand_2’);
}

Y.N. Srikant Intermediate Code Generation

SATG for Expressions and Assignments (contd.)

E → E1||E2
{ E.result := newtemp(integer);
gen(‘E.result = E1.result || E2.result’);

E → E1 < E2
{ E.result := newtemp(integer);
gen(‘E.result = 1’);
gen(‘if E1.result < E2.result goto nextquad+2’);
gen(‘E.result = 0’);

}
L→ id { search_var_param(id.name, active_func_ptr,

level, found, vn); L.place := vn; L.offset := NULL; }

Note: search_var_param() searches for id.name in the
variable list first, and if not found, in the parameter list next.

Y.N. Srikant Intermediate Code Generation

SATG for Expressions and Assignments (contd.)

ELIST → id [E
{ search_var_param(id.name, active_func_ptr,

level, found, vn); ELIST.dim := 1;
ELIST.arrayptr := vn; ELIST.result := E.result; }

L→ ELIST] { L.place := ELIST.arrayptr;
temp := newtemp(int); L.offset := temp;
ele_size := ELIST.arrayptr -> ele_size;
gen(‘temp = ELIST.result * ele_size’); }

ELIST → ELIST1 , E
{ ELIST.dim := ELIST1.dim + 1;
ELIST.arrayptr := ELIST1.arrayptr
num_elem := get_dim(ELIST1.arrayptr, ELIST1.dim + 1);
temp1 := newtemp(int); temp2 := newtemp(int);
gen(‘temp1 = ELIST1.result * num_elem’);
ELIST.result := temp2; gen(‘temp2 = temp1 + E.result’); }

Y.N. Srikant Intermediate Code Generation

Short Circuit Evaluation for Boolean Expressions

(exp1 && exp2): value = if (∼exp1) then FALSE else exp2
This implies that exp2 need not be evaluated if exp1 is
FALSE

(exp1 || exp2):value = if (exp1) then TRUE else exp2
This implies that exp2 need not be evaluated if exp1 is
TRUE

Since boolean expressions are used mostly in conditional
and loop statements, it is possible to realize perform short
circuit evaluation of expressions using control flow
constructs
In such a case, there are no explicit ‘||’ and ‘&&’ operators
in the intermediate code (as earlier), but only jumps
Much faster, since complete expression is not evaluated
If unevaluated expressions have side effects, then program
may have non-deterministic behaviour

Y.N. Srikant Intermediate Code Generation

Control-Flow Realization of Boolean Expressions

if ((a+b < c+d) || ((e==f) && (g > h-k))) A1; else A2; A3;

100: T1 = a+b
101: T2 = c+d
103: if T1 < T2 goto L1
104: goto L2
105:L2: if e==f goto L3
106: goto L4
107:L3: T3 = h-k
108: if g > T3 goto L5
109: goto L6
110:L1:L5: code for A1
111: goto L7
112:L4:L6: code for A2
113:L7: code for A3

Y.N. Srikant Intermediate Code Generation

Intermediate Code Generation - Part 3

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Intermediate Code Generation

Outline of the Lecture

Introduction (covered in part 1)
Different types of intermediate code (covered in part 1)
Intermediate code generation for various constructs

Y.N. Srikant Intermediate Code Generation

Short Circuit Evaluation for Boolean Expressions

(exp1 && exp2): value = if (∼exp1) then FALSE else exp2
This implies that exp2 need not be evaluated if exp1 is
FALSE

(exp1 || exp2):value = if (exp1) then TRUE else exp2
This implies that exp2 need not be evaluated if exp1 is
TRUE

Since boolean expressions are used mostly in conditional
and loop statements, it is possible to realize perform short
circuit evaluation of expressions using control flow
constructs
In such a case, there are no explicit ‘||’ and ‘&&’ operators
in the intermediate code (as earlier), but only jumps
Much faster, since complete expression is not evaluated
If unevaluated expressions have side effects, then program
may have non-deterministic behaviour

Y.N. Srikant Intermediate Code Generation

Control-Flow Realization of Boolean Expressions

if ((a+b < c+d) || ((e==f) && (g > h-k))) A1; else A2; A3;

100: T1 = a+b
101: T2 = c+d
103: if T1 < T2 goto L1
104: goto L2
105:L2: if e==f goto L3
106: goto L4
107:L3: T3 = h-k
108: if g > T3 goto L5
109: goto L6
110:L1:L5: code for A1
111: goto L7
112:L4:L6: code for A2
113:L7: code for A3

Y.N. Srikant Intermediate Code Generation

SATG for Control-Flow Realization of Boolean
Expressions

E → E1 || M E2 { backpatch(E1.falselist, M.quad);
E.truelist := merge(E1.truelist, E2.truelist);
E.falselist := E2.falselist }

E → E1 && M E2 { backpatch(E1.truelist, M.quad);
E.falselist := merge(E1.falselist, E2.falselist);
E.truelist := E2.truelist }

E → ∼ E1 { E.truelist := E1.falselist;
E.falselist := E1.truelist }

M → ε {M.quad := nextquad; }
E → E1 < E2 { E.truelist := makelist(nextquad);

E.falselist := makelist(nextquad+1);
gen(‘if E1.result < E2.result goto __’);
gen(‘goto __’); }

Y.N. Srikant Intermediate Code Generation

SATG for Control-Flow Realization of Boolean
Expressions

E → (E1)
{ E.truelist := E1.truelist; E.falselist := E1.falselist }
E → true { E.truelist := makelist(nextquad); gen(‘goto __’);}
E → false
{ E.falselist := makelist(nextquad); gen(‘goto __’);}
S → IFEXP S1 N else M S2
{ backpatch(IFEXP.falselist, M.quad);
S.next := merge(S1.next, S2.next, N.next); }

S → IFEXP S1
{ S.next := merge(S1.next, IFEXP.falselist); }
IFEXP → if E { backpatch(E.truelist, nextquad);

IFEXP.falselist := E.falselist;}
N → ε { N.next := makelist(nextquad); gen(‘goto __’); }

Y.N. Srikant Intermediate Code Generation

SATG for Control-Flow Realization of Boolean
Expressions

S →WHILEXEP do S1
{ gen(‘goto WHILEEXP.begin’);
backpatch(S1.next, WHILEEXP.begin);
S.next := WHILEEXP.falselist; }

WHILEXEP → while M E
{ WHILEEXP.falselist := E.falselist;
backpatch(E.truelist, nextquad);
WHILEEXP.begin := M.quad; }

M → ε (repeated here for convenience)
{ M.quad := nextquad; }

Y.N. Srikant Intermediate Code Generation

Code Template for Switch Statement

switch (exp) {
case l1 : SL1
case l21 : case l22 : SL2
...
case ln−1 : SLn−1
default: SLn

}
This code template can be
used for switch statements
with 10-15 cases. Note that
statement list SLi must
incorporate a ‘break’
statement, if necessary

code for exp (result in T)
goto TEST

L1: code for SL1
L2: code for SL2

...
Ln: code for SLn

goto NEXT
TEST: if T==l1 goto L1

if T==l21 goto L2
if T==l22 goto L2
...
if T==ln−1 goto Ln−1
if default_yes goto Ln

NEXT:

Y.N. Srikant Intermediate Code Generation

Grammar for Switch Statement

The grammar for the ‘switch’ statement according to ANSI
standard C is:
selection_statement→ SWITCH ‘(’ expression ‘)’ statement
However, a more intuitive form of the grammar is shown below

STMT → SWITCH_HEAD SWITCH_BODY
SWITCH_HEAD → switch (E)/* E must be int type */
SWITCH_BODY → { CASE_LIST }
CASE_LIST → CASE_ST | CASE_LIST CASE_ST
CASE_ST → CASE_LABELS STMT _LIST ;

CASE_LABELS → ε | CASE_LABELS CASE_LABEL
CASE_LABEL→ case CONST _INTEXPR : | default :
/* CONST_INTEXPR must be of int or char type */
STMT → break /* also an option */

Y.N. Srikant Intermediate Code Generation

SATG for Switch Statement

SWITCH_HEAD → switch (E)
{ SWITCH_HEAD.result := E.result;
SWITCH_HEAD.test := nextquad;
gen(‘goto __’); }

STMT → break
{ STMT.next := makelist(nextquad);
gen(‘goto __’); }

CASE_LABEL→ case CONST _INTEXPR :
{ CASE_LABEL.val := CONST_INTEXPR.val;
CASE_LABEL.default := false; }

CASE_LABEL→ default : {CASE_LABEL.default := true; }
CASE_LABELS → ε { CASE_LABELS.default := false;
{ CASE_LABELS.list := makelist(NULL); }

Y.N. Srikant Intermediate Code Generation

SATG for Switch Statement (contd.)

CASE_LABELS → CASE_LABELS1 CASE_LABEL
{ if (∼CASE_LABEL.default) CASE_LABELS.list :=
append(CASE_LABELS1.list, CASE_LABEL.val);
else CASE_LABELS.list := CASE_LABELS1.list;
if (CASE_LABELS1.default || CASE_LABEL.default)
CASE_LABEL.default := true; }

CASE_ST → CASE_LABELS M STMT _LIST ;
{ CASE_ST.next := STMT_LIST.next; CASE_ST.list :=
add_jump_target(CASE_LABELS.list, M.quad);
if (CASE_LABELS.default) CASE_ST.default := M.quad;
else CASE_ST.default := -1; }

CASE_LIST → CASE_ST
{ CASE_LIST.next := CASE_ST.next;
CASE_LIST.list := CASE_ST.list;
CASE_LIST.default := CASE_ST.default; }

Y.N. Srikant Intermediate Code Generation

Code Template for Switch Statement

switch (exp) {
case l1 : SL1
case l21 : case l22 : SL2
...
case ln−1 : SLn−1
default: SLn

}
This code template can be
used for switch statements
with 10-15 cases. Note that
statement list SLi must
incorporate a ‘break’
statement, if necessary

code for exp (result in T)
goto TEST

L1: code for SL1
L2: code for SL2

...
Ln: code for SLn

goto NEXT
TEST: if T==l1 goto L1

if T==l21 goto L2
if T==l22 goto L2
...
if T==ln−1 goto Ln−1
if default_yes goto Ln

NEXT:

Y.N. Srikant Intermediate Code Generation

SATG for Switch Statement (contd.)

CASE_LIST → CASE_LIST1 CASE_ST
{ CASE_LIST.next :=

merge(CASE_LIST1.next, CASE_ST.next);
CASE_LIST.list :=

merge(CASE_LIST1.list, CASE_ST.list);
CASE_LIST.default := CASE_LIST1.default == -1 ?

CASE_ST.default : CASE_LIST1.default; }
SWITCH_BODY → { CASE_LIST }
{ SWITCH_BODY.next :=

merge(CASE_LIST.next, makelist(nextquad));
gen(‘goto __’);
SWITCH_BODY.list := CASE_LIST.list;
SWITCH_BODY.default := CASE_LIST.default; }

Y.N. Srikant Intermediate Code Generation

SATG for Switch Statement (contd.)

STMT → SWITCH_HEAD SWITCH_BODY
{ backpatch(SWITCH_HEAD.test, nextquad);
for each (value, jump) pair in SWITCH_BODY.list do {
(v,j) := next (value, jump) pair from SWITCH_BODY.list;
gen(‘if SWITCH_HEAD.result == v goto j’);

}
if (SWITCH_BODY.default != -1)

gen(‘goto SWITCH_BODY.default’);
STMT.next := SWITCH_BODY.next;

}

Y.N. Srikant Intermediate Code Generation

C For-Loop

The for-loop of C is very general
for (expression1; expression2; expression3) statement
This statement is equivalent to
expression1;
while (expression2) { statement expression3 ; }
All three expressions are optional and any one (or all) may
be missing
Code generation is non-trivial because the order of
execution of statement and expression3 are reversed
compared to their occurrance in the for-statement
Difficulty is due to 1-pass bottom-up code generation
Code generation during parse tree traversals mitigates this
problem by generating code for expression3 before that of
statement

Y.N. Srikant Intermediate Code Generation

Code Generation Template for C For-Loop

for (E1; E2; E3) S
code for E1

L1: code for E2 (result in T)
goto L4

L2: code for E3
goto L1

L3: code for S /* all jumps out of S goto L2 */
goto L2

L4: if T == 0 goto L5 /* if T is zero, jump to exit */
goto L3

L5: /* exit */

Y.N. Srikant Intermediate Code Generation

Code Generation for C For-Loop

STMT → for (E1; M E2; N E3) P STMT1
{ gen(‘goto N.quad+1’); Q1 := nextquad;
gen(‘if E2.result == 0 goto __’);
gen(‘goto P.quad+1’);
backpatch(N.quad, Q1);
backpatch(STMT1.next, N.quad+1);
backpatch(P.quad, M.quad);
STMT.next := makelist(Q1); }

M → ε { M.quad := nextquad; }
N → ε { N.quad := nextquad; gen(‘goto __’); }
P → ε { P.quad := nextquad; gen(‘goto __’); }

Y.N. Srikant Intermediate Code Generation

ALGOL For-Loop

Let us also consider a more restricted form of the for-loop
STMT → for id = EXP1 to EXP2 by EXP3 do STMT1
where, EXP1, EXP2, and EXP3 are all arithmetic
expressions, indicating starting, ending and increment
values of the iteration index
EXP3 may have either positive or negative values
All three expressions are evaluated before the iterations
begin and are stored. They are not evaluated again during
the loop-run
All three expressions are mandatory (unlike in the
C-for-loop)

Y.N. Srikant Intermediate Code Generation

Code Generation Template for ALGOL For-Loop

STMT → for id = EXP1 to EXP2 by EXP3 do STMT1

Code for EXP1 (result in T1)
Code for EXP2 (result in T2)
Code for EXP3 (result in T3)
goto L1

L0: Code for STMT1
id = id + T3
goto L2

L1: id = T1
L2: if (T3 ≤ 0) goto L3

if (id > T2) goto L4 /* positive increment */
goto L0

L3: if (id < T2) goto L4 /* negative increment */
goto L0

L4:

Y.N. Srikant Intermediate Code Generation

Code Generation for ALGOL For-Loop

M → ε { M.quad := nextquad; gen(‘goto __’); }

STMT → for id = EXP1 to EXP2 by EXP3 M do STMT1
{ search(id.name, idptr); gen(‘idptr = idptr + EXP3.result’);
Q1 := nextquad; gen(‘goto __’); backpatch(M.quad, nextquad);
gen(‘idptr = EXP1.result’); backpatch(Q1, nextquad);
Q2 := nextquad; gen(‘if EXP3.result ≤ 0 goto __’);
gen(‘if idptr > EXP2.result goto __’);
gen(‘goto M.quad+1’); backpatch(Q2, nextquad);
Q3 := nextquad; gen(‘if idptr < EXP2.result goto __’);
gen(‘goto M.quad+1’);
STMT.next :=

merge(makelist(Q2+1), makelist(Q3), STMT1.next);

Y.N. Srikant Intermediate Code Generation

Another Code Generation Template for ALGOL
For-Loop

STMT → for id = EXP1 to EXP2 by EXP3 do STMT1

Code for EXP1 (result in T1)
Code for EXP2 (result in T2)
Code for EXP3 (result in T3)
id = T1

L1: if (T3 ≤ 0) goto L2
if (id > T2) goto L4 /* positive increment */
goto L3

L2: if (id < T2) goto L4 /* negative increment */
L3: Code for STMT

id = id + T3
goto L1

L4:

Code generation using this template is left as an exercise
Y.N. Srikant Intermediate Code Generation

Run-Time Array Range Checking

int b[10][20]; a = b[exp1][exp2];
The code generated for this assignment with run-time array
range checking is as below:

code for exp1 /* result in T1 */
if T1 < 10 goto L1
‘error: array overflow in dimension 1’
T1 = 9 /* max value for dim 1 */

L1: code for exp2 /* result in T2 */
if T2 < 20 goto L2
‘error: array overflow in dimension 2’
T2 = 19 /* max value for dim 2 */

L2: T3 = T1*20
T4 = T3+T2
T5 = T4*intsize
T6 = addr(b)
a = T6[T5]

Y.N. Srikant Intermediate Code Generation

Code Generation with Array Range Checking

S → L := E
{ if (L.offset == NULL) gen(‘L.place = E.result’);
else gen(‘L.place[L.offset] = E.result’);}

E → L { if (L.offset == NULL) E.result := L.place;
else { E.result := newtemp(L.type);

gen(‘E.result = L.place[L.offset]’); }
ELIST → id [E { search_var(id.name, active_func_ptr,

level, found, vn); ELIST.arrayptr := vn;
ELIST.result := E.result; ELIST.dim := 1;
num_elem := get_dim(vn, 1); Q1 := nextquad;
gen(‘if E.result < num_elem goto Q1+3’);
gen(‘error(“array overflow in dimension 1”)’);
gen(‘E.result = num_elem-1’);}

Y.N. Srikant Intermediate Code Generation

Code Generation with Array Range Checking(contd.)

L→ ELIST] { L.place := ELIST.arrayptr;
temp := newtemp(int); L.offset := temp;
ele_size := ELIST.arrayptr -> ele_size;
gen(‘temp = ELIST.result * ele_size’); }

ELIST → ELIST1 , E
{ ELIST.dim := ELIST1.dim + 1;
ELIST.arrayptr := ELIST1.arrayptr
num_elem := get_dim(ELIST1.arrayptr, ELIST1.dim + 1);
Q1 := nextquad;
gen(‘if E.result < num_elem goto Q1+3’);
gen(‘error(“array overflow in (ELIST1.dim + 1)”)’);
gen(‘E.result = num_elem-1’);
temp1 := newtemp(int); temp2 := newtemp(int);
gen(‘temp1 = ELIST1.result * num_elem’);
ELIST.result := temp2; gen(‘temp2 = temp1 + E.result’); }

Y.N. Srikant Intermediate Code Generation

Intermediate Code Generation - Part 4

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Intermediate Code Generation

Outline of the Lecture

Introduction (covered in part 1)
Different types of intermediate code (covered in part 1)
Intermediate code generation for various constructs

Y.N. Srikant Intermediate Code Generation

break and continue Statements

break statements can occur only within while, for,
do-while and switch statements
continue statements can occur only within while, for,
and do-while statements (i.e., only loops)
All other occurrences are flagged as errors by the compiler
Examples (incorrect programs)

main(){
int a=5;
if (a<5) {break; printf("hello-1");};
printf("hello-2");}

}
Replacing break with continue in the above program is
also erroneous

Y.N. Srikant Intermediate Code Generation

break and continue Statements (correct programs)

The program below prints 6

main(){int a,b=10; for(a=1;a<5;a++) b--;
printf("%d",b);}

The program below prints 8

main(){int a,b=10; for(a=1;a<5;a++)
{ if (a==3) break; b--;} printf("%d",b);}

The program below prints 7

main(){int a,b=10; for(a=1;a<5;a++)
{ if (a==3) continue; b--;} printf("%d",b);}

This program also prints 8

main(){int a,b=10; for(a=1;a<5;a++)
{ while (1) break;
if (a==3) break; b--;} printf("%d",b);}

Y.N. Srikant Intermediate Code Generation

Handling break and continue Statements

We need extra attributes for the non-terminal STMT
STMT .break and STMT .continue, along with
STMT .next(existing one), all of which are lists of
quadruples with unfilled branch targets

STMT → break
{ STMT.break := makelist(nextquad); gen(‘goto __’);
STMT.next := makelist(NULL);
STMT.continue := makelist(NULL); }

STMT → continue
{ STMT.continue := makelist(nextquad); gen(‘goto __’);
STMT.next := makelist(NULL);
STMT.break := makelist(NULL); }

Y.N. Srikant Intermediate Code Generation

SATG for While-do Statement with break and continue

WHILEXEP → while M E
{ WHILEEXP.falselist := makelist(nextquad);
gen(‘if E.result ≤ 0 goto __’);
WHILEEXP.begin := M.quad; }

STMT →WHILEXEP do STMT1
{ gen(‘goto WHILEEXP.begin’);
backpatch(STMT1.next, WHILEEXP.begin);
backpatch(STMT1.continue, WHILEEXP.begin);
STMT.continue := makelist(NULL);
STMT.break := makelist(NULL);
STMT.next := merge(WHILEEXP.falselist, STMT1.break); }

M → ε
{ M.quad := nextquad; }

Y.N. Srikant Intermediate Code Generation

Code Generation Template for C For-Loop
with break and continue

for (E1; E2; E3) S
code for E1

L1: code for E2 (result in T)
goto L4

L2: code for E3
goto L1

L3: code for S /* all breaks out of S goto L5 */
/* all continues and other jumps out of S goto L2 */

goto L2
L4: if T == 0 goto L5 /* if T is zero, jump to exit */

goto L3
L5: /* exit */

Y.N. Srikant Intermediate Code Generation

Code Generation for C For-Loop
with break and continue

STMT → for (E1; M E2; N E3) P STMT1
{ gen(‘goto N.quad+1’); Q1 := nextquad;
gen(‘if E2.result == 0 goto __’); gen(‘goto P.quad+1’);
backpatch(makelist(N.quad), Q1);
backpatch(makelist(P.quad), M.quad);
backpatch(STMT1.continue, N.quad+1);
backpatch(STMT1.next, N.quad+1);
STMT.next := merge(STMT1.break, makelist(Q1));
STMT.break := makelist(NULL);
STMT.continue := makelist(NULL); }

M → ε { M.quad := nextquad; }
N → ε { N.quad := nextquad; gen(‘goto __’); }
P → ε { P.quad := nextquad; gen(‘goto __’); }

Y.N. Srikant Intermediate Code Generation

LATG for If-Then-Else Statement

Assumption: No short-circuit evaluation for E

If (E) S1 else S2
code for E (result in T)
if T≤ 0 goto L1 /* if T is false, jump to else part */
code for S1 /* all exits from within S1 also jump to L2 */
goto L2 /* jump to exit */

L1: code for S2 /* all exits from within S2 also jump to L2 */
L2: /* exit */

S → if E { N := nextquad; gen(‘if E.result <= 0 goto __’); }
S1 else { M := nextquad; gen(‘goto __’);

backpatch(N, nextquad); }
S2 { S.next := merge(makelist(M), S1.next, S2.next); }

Y.N. Srikant Intermediate Code Generation

LATG for While-do Statement

Assumption: No short-circuit evaluation for E

while (E) do S
L1: code for E (result in T)

if T≤ 0 goto L2 /* if T is false, jump to exit */
code for S /* all exits from within S also jump to L1 */
goto L1 /* loop back */

L2: /* exit */

S → while { M := nextquad; }
E { N := nextquad; gen(‘if E.result <= 0 goto __’); }
do S1 { backpatch(S1.next, M); gen(‘goto M’);

S.next := makelist(N); }

Y.N. Srikant Intermediate Code Generation

LATG for Other Statements

S → A { S.next := makelist(NULL); }
S → { SL } { S.next := SL.next; }
SL→ ε { SL.next := makelist(NULL); }
SL→ S; { backpatch(S.next, nextquad); }

SL1 { SL.next := SL1.next; }
When a function ends, we perform { gen(‘func end’); }. No
backpatching of SL.next is required now, since this list will
be empty, due to the use of SL→ ε as the last production.
LATG for function declaration and call, and return
statement are left as exercises

Y.N. Srikant Intermediate Code Generation

LATG for Expressions

A→ L = E
{ if (L.offset == NULL) /* simple id */

gen(‘L.place = E.result’);
else gen(‘L.place[L.offset] = E.result’); }

E → T { E’.left := T.result; }
E ′ { E.result := E’.result; }

E ′ → + T { temp := newtemp(T.type);
gen(‘temp = E’.left + T.result’); E ′

1.left := temp; }
E ′

1 { E’.result := E ′
1.result; }

Note: Checking for compatible types, etc., are all required
here as well. These are left as exercises.
E ′ → ε { E’.result := E’.left; }
Processing T → F T ′, T ′ → ∗F T ′ | ε, F → (E), boolean
and relational expressions are all similar to the above
productions

Y.N. Srikant Intermediate Code Generation

LATG for Expressions(contd.)

F → L { if (L.offset == NULL) F.result := L.place;
else { F.result := newtemp(L.type);

gen(‘F.result = L.place[L.offset]’); }
F → num { F.result := newtemp(num.type);

gen(‘F.result = num.value’); }
L→ id { search(id.name, vn); INDEX.arrayptr := vn; }

INDEX { L.place := vn; L.offset := INDEX.offset; }
INDEX → ε { INDEX.offset := NULL; }
INDEX → [{ ELIST.dim := 1;

ELIST.arrayptr := INDEX.arrayptr; }
ELIST]
{ temp := newtemp(int); INDEX.offset := temp;

ele_size := INDEX.arrayptr -> ele_size;
gen(‘temp = ELIST.result * ele_size’); }

Y.N. Srikant Intermediate Code Generation

LATG for Expressions(contd.)

ELIST → E { INDEXLIST.dim := ELIST.dim+1;
INDEXLIST.arrayptr := ELIST.arrayptr;
INDEXLIST.left := E.result; }

INDEXLIST { ELIST.result := INDEXLIST.result; }
INDEXLIST → ε { INDEXLIST.result := INDEXLIST.left; }
INDEXLIST → , { action 1 }

ELIST { gen(‘temp = temp + ELIST.result’);
INDEXLIST.result := temp; }

action 1:
{ temp := newtemp(int);

num_elem := rem_num_elem(INDEXLIST.arrayptr,
INDEXLIST.dim);

gen(‘temp = INDEXLIST.left * num_elem’);
ELIST.arrayptr := INDEXLIST.arrayptr;
ELIST.dim := INDEXLIST.dim; }

Y.N. Srikant Intermediate Code Generation

LATG for Expressions(contd.)

The function rem_num_elem(arrayptr, dim) computes the
product of the dimensions of the array, starting from
dimension dim. For example, consider the expression,
a[i,j,k,l], and its declaration int a[10,20,30,40].
The expression translates to
i ∗ 20 ∗ 30 ∗ 40+ j ∗ 30 ∗ 40+ k ∗ 40+ l . The above function
returns, 24000(dim=2), 1200(dim=3), and 40(dim=3).

Y.N. Srikant Intermediate Code Generation

Run-time Environments - 1

Y.N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 2

Outline of the Lecture

n  What is run-time support?
n  Parameter passing methods
n  Storage allocation
n  Activation records
n  Static scope and dynamic scope
n  Passing functions as parameters
n  Heap memory management
n  Garbage Collection

Y.N. Srikant 3

What is Run-time Support?

n  It is not enough if we generate machine code from intermediate
code

n  Interfaces between the program and computer system resources
are needed
q  There is a need to manage memory when a program is running

n  This memory management must connect to the data objects of
programs

n  Programs request for memory blocks and release memory blocks
n  Passing parameters to fucntions needs attention

q  Other resources such as printers, file systems, etc., also need to
be accessed

n  These are the main tasks of run-time support
n  In this lecture, we focus on memory management

Y.N. Srikant 4

Parameter Passing Methods
- Call-by-value
n  At runtime, prior to the call, the parameter is

evaluated, and its actual value is put in a location
private to the called procedure
q  Thus, there is no way to change the actual parameters.
q  Found in C and C++
q  C has only call-by-value method available

n  Passing pointers does not constitute call-by-reference
n  Pointers are also copied to another location
n  Hence in C, there is no way to write a function to insert a node

at the front of a linked list (just after the header) without using
pointers to pointers

Y.N. Srikant 5

Problem with Call-by-Value

p null

q
copy of p,
a parameter
passed to
function f

node inserted
by the function f

p null

node insertion as desired

Y.N. Srikant 6

Parameter Passing Methods
- Call-by-Reference
n  At runtime, prior to the call, the parameter is

evaluated and put in a temporary location, if it
is not a variable

n  The address of the variable (or the
temporary) is passed to the called procedure

n  Thus, the actual parameter may get changed
due to changes to the parameter in the called
procedure

n  Found in C++ and Java

Y.N. Srikant 7

Call-by-Value-Result

n  Call-by-value-result is a hybrid of Call-by-value and Call-by-
reference

n  Actual parameter is calculated by the calling procedure and is
copied to a local location of the called procedure

n  Actual parameter’s value is not affected during execution of the
called procedure

n  At return, the value of the formal parameter is copied to the
actual parameter, if the actual parameter is a variable

n  Becomes different from call-by-reference method
q  when global variables are passed as parameters to the called

procedure and
q  the same global variables are also updated in another procedure

invoked by the called procedure
n  Found in Ada

Y.N. Srikant 8

Difference between Call-by-Value, Call-by-
Reference, and Call-by-Value-Result

int a;
void Q()
 { a = a+1; }
void R(int x);
 { x = x+10; Q(); }
main()
 { a = 1; R(a); print(a); }

call-by-
value

call-by-
reference

call-by-
value-result

2 12 11

Value of a printed

Note: In Call-by-V-R,
value of x is copied
into a, when proc R
returns. Hence a=11.

Y.N. Srikant 9

Parameter Passing Methods
- Call-by-Name
n  Use of a call-by-name parameter implies a textual

substitution of the formal parameter name by the
actual parameter

n  For example, if the procedure
 void R (int X, int I);
 { I = 2; X = 5; I = 3; X = 1; }
 is called by R(B[J*2], J)
 this would result in (effectively) changing the body to
 { J = 2; B[J*2] = 5; J = 3; B[J*2] = 1; }
 just before executing it

Y.N. Srikant 10

Parameter Passing Methods
- Call by Name
n  Note that the actual parameter corresponding

to X changes whenever J changes
q  Hence, we cannot evaluate the address of the

actual parameter just once and use it
q  It must be recomputed every time we reference

the formal parameter within the procedure
n  A separate routine (called thunk) is used to

evaluate the parameters whenever they are
used

n  Found in Algol and functional languages

Y.N. Srikant 11

Example of Using the Four Parameter
Passing Methods
1.  void swap (int x, int y)
2.  { int temp;
3.  temp = x;
4.  x = y;
5.  y = temp;
6.  } /*swap*/
7.  ...
8.  { i = 1;
9.  a[i] =10; /* int a[5]; */
10.  print(i,a[i]);
11.  swap(i,a[i]);
12.  print(i,a[1]); }

n  Results from the 4 parameter passing
methods (print statements)

call-by-
value

call-by-
reference

call-by-
val-result

call-by-
name

1 10
1 10

1 10
10 1

1 10
10 1

1 10
error!

Reason for the error in the Call-by-name Example

temp = i; /* => temp = 1 */
i = a[i]; /* => i =10 since a[i] ==10 */
a[i] = temp; /* => a[10] = 1 => index out of bounds */

The problem is in the swap routine

Run-time Environments - 2

Y.N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 2

Outline of the Lecture

n  What is run-time support? (in part 1)
n  Parameter passing methods (in part 1)
n  Storage allocation
n  Activation records
n  Static scope and dynamic scope
n  Passing functions as parameters
n  Heap memory management
n  Garbage Collection

Y.N. Srikant 3

Code and Data Area in Memory

n  Most programming languages distinguish between
code and data

n  Code consists of only machine instructions and
normally does not have embedded data
q  Code area normally does not grow or shrink in size as

execution proceeds
n  Unless code is loaded dynamically or code is produced

dynamically
q  As in Java – dynamic loading of classes or producing classes and

instantiating them dynamically through reflection
q  Memory area can be allocated to code statically

n  We will not consider Java further in this lecture
n  Data area of a program may grow or shrink in size

during execution

Y.N. Srikant 4

Static Versus Dynamic Storage Allocation

n  Static allocation
q  Compiler makes the decision regarding storage allocation

by looking only at the program text
n  Dynamic allocation

q  Storage allocation decisions are made only while the
program is running

q  Stack allocation
n  Names local to a procedure are allocated space on a stack

q  Heap allocation
n  Used for data that may live even after a procedure call returns
n  Ex: dynamic data structures such as symbol tables
n  Requires memory manager with garbage collection

Y.N. Srikant 5

Static Data Storage Allocation

n  Compiler allocates space for
all variables (local and global)
of all procedures at compile
time
q  No stack/heap allocation; no

overheads
q  Ex: Fortran IV and Fortran 77
q  Variable access is fast since

addresses are known at compile
time

q  No recursion

Main program
variables

Procedure P1
variables

Procedure P2
variables

Procedure P4
variables

Main memory

Y.N. Srikant 6

Dynamic Data Storage Allocation

n  Compiler allocates space only for global
variables at compile time

n  Space for variables of procedures will be
allocated at run-time
q  Stack/heap allocation
q  Ex: C, C++, Java, Fortran 8/9
q  Variable access is slow (compared to static

allocation) since addresses are accessed through
the stack/heap pointer

q  Recursion can be implemened

Dynamic Stack Storage Allocation

Y.N. Srikant 7

Main

R

Q

R
Base

Next

Currently active
procedure

Stack of activation
records

Calling sequence:
Main à R à Q à R

Y.N. Srikant 8

Activation Record Structure

Note:

The position of the fields of
the act. record as
shown are only notional.

Implementations can
choose different orders;
e.g., function result could
be after local var.

Static and Dynamic links
(also called Access and Control link resp.)

(Address of) function result

Actual parameters

Local variables

Temporaries

Saved machine status

Space for local arrays

Return address

Y.N. Srikant 9

Variable Storage Offset Computation

n  The compiler should compute
q  the offsets at which variables and constants will

be stored in the activation record (AR)
n  These offsets will be with respect to the

pointer pointing to the beginning of the AR
n  Variables are usually stored in the AR in the

declaration order
n  Offsets can be easily computed while

performing semantic analysis of declarations

Overlapped Variable Storage for Blocks in C

Y.N. Srikant 10

int example(int p1, int p2)
B1 { a,b,c; /* sizes - 10,10,10;
 offsets 0,10,20 */
 ...
 B2 { d,e,f; /* sizes - 100, 180, 40;
 offsets 30, 130, 310 */
 ...}
 B3 { g,h,i; /* sizes - 20,20,10;
 offsets 30, 50, 70 */
 ...
 B4 { j,k,l; /* sizes - 70, 150, 20;
 offsets 80, 150, 300 */
 ... }
 B5 { m,n,p; /* sizes - 20, 50, 30;
 offsets 80, 100, 150 */
 ... }
 }
 }

Overlapped
storage

Overlapped
storage

Storage required =
B1+max(B2,(B3+max(B4,B5))) =
30+max(320,(50+max(240,100))) =
 30+max(320, (50+240)) =
 30+max(320,290) = 350

Overlapped Variable Storage for Blocks in C (Ex.)

Y.N. Srikant 11

B1=30

B2=320

B3=50

B4=240

B1=30

B3=50

B5=100

B1=30 Storage required =
B1+max(B2,(B3+max(B4,B5))) =
30+max(320,(50+max(240,100))) =
 30+max(320, (50+240)) =
 30+max(320,290) = 350

0

350

Y.N. Srikant 12

Allocation of Activation Records
(nested procedures)

program RTST;
 procedure P;
 procedure Q;
 begin R; end
 procedure R;
 begin Q; end
 begin R; end
begin P; end

RTST -> P -> R -> Q -> R

Static Link
Dynamic Link

RTST

SL chain DL chain

Next

Base

Activation records are
created at procedure entry
time and destroyed at
procedure exit time

Y.N. Srikant 13

Allocation of Activation Records (contd.)

program RTST;
 procedure P;
 procedure Q;
 begin R; end
 procedure R;
 begin Q; end
 begin R; end
begin P; end

RTST -> P -> R -> Q -> R

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Base

Next

Y.N. Srikant 14

Allocation of Activation Records (contd.)

program RTST;
 procedure P;
 procedure Q;
 begin R; end
 procedure R;
 begin Q; end
 begin R; end
begin P; end

RTST -> P -> R -> Q -> R

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Static Link
Dynamic Link

R
Base

Next

Y.N. Srikant 15

Allocation of Activation Records (contd.)

program RTST;
 procedure P;
 procedure Q;
 begin R; end
 procedure R;
 begin Q; end
 begin R; end
begin P; end

RTST -> P -> R -> Q -> R

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Static Link
Dynamic Link

R

Static Link
Dynamic Link

Q

Base

Next

Y.N. Srikant 16

Allocation of Activation Records (contd.)

1 program RTST;
2 procedure P;
3 procedure Q;
 begin R; end
3 procedure R;
 begin Q; end
 begin R; end
 begin P; end

RTST1 -> P2 -> R3 -> Q3 -> R3

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Static Link
Dynamic Link

R

Static Link
Dynamic Link

Q

Static Link
Dynamic Link

R

Base

Next

Y.N. Srikant 17

Allocation of Activation Records (contd.)
Skip L1-L2+1 records
starting from the caller’s
AR and establish the
static link to the AR
reached
L1 – caller, L2 – Callee
RTST1 -> P2 -> R3 -> Q3 -> R3

Ex: Consider P2 -> R3

2-3+1=0; hence the SL of R
points to P
Consider R3 -> Q3
3-3+1=1; hence skipping one
link starting from R, we get P;
SL of Q points to P

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Static Link
Dynamic Link

R

Static Link
Dynamic Link

Q

Static Link
Dynamic Link

R

Base

Next

Y.N. Srikant 18

Allocation of Activation Records (contd.)

program RTST;
 procedure P;
 procedure Q;
 begin R; end
 procedure R;
 begin Q; end
 begin R; end
begin P; end

RTST -> P -> R -> Q <- R

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Static Link
Dynamic Link

R

Static Link
Dynamic Link

Q

Base

Next

Return from R

Y.N. Srikant 19

Allocation of Activation Records (contd.)

program RTST;
 procedure P;
 procedure Q;
 begin R; end
 procedure R;
 begin Q; end
 begin R; end
begin P; end

RTST -> P -> R <- Q

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Static Link
Dynamic Link

R
Base

Next

Return from Q

Y.N. Srikant 20

Allocation of Activation Records (contd.)

program RTST;
 procedure P;
 procedure Q;
 begin R; end
 procedure R;
 begin Q; end
 begin R; end
begin P; end

RTST -> P <- R

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Base

Next

Return from R

Y.N. Srikant 21

Allocation of Activation Records (contd.)

program RTST;
 procedure P;
 procedure Q;
 begin R; end
 procedure R;
 begin Q; end
 begin R; end
begin P; end

RTST <- P

Static Link
Dynamic Link

RTST

SL chain DL chain

Next

Base

Return from P

Y.N. Srikant 22

Display Stack of Activation Records
1 program RTST;
2 procedure P;
3 procedure Q;
 begin R; end
3 procedure R;
 begin Q; end
 begin R; end
 begin P; end

Pop L1-L2+1 records off the display
of the caller and push the pointer to
AR of callee (L1 – caller, L2 – Callee)

The popped pointers are stored in
the AR of the caller and restored to
the DISPLAY after the callee returns

RTST RTST

RTST RTST

RTST

P

P P

P

Q

R

R

call

return

Y.N. Srikant 23

Static Scope and Dynamic Scope

n  Static Scope
q  A global identifier refers to the identifier with that name that

is declared in the closest enclosing scope of the program
text

q  Uses the static (unchanging) relationship between blocks in
the program text

n  Dynamic Scope
q  A global identifier refers to the identifier associated with the

most recent activation record
q  Uses the actual sequence of calls that are executed in the

dynamic (changing) execution of the program
n  Both are identical as far as local variables are

concerned

Y.N. Srikant 24

Static Scope and Dynamic Scope :
An Example
int x = 1, y = 0;
int g(int z)
 { return x+z;}
int f(int y) {

 int x; x = y+1;
 return g(y*x);

}
y = f(3);

After the call to g,
Static scope: x = 1
Dynamic scope: x = 4

x 1

y 3

x 4

z 12

outer block

f(3)

g(12)

Stack of activation records
after the call to g

y 0

Y.N. Srikant 25

Static Scope and Dynamic Scope:
Another Example
float r = 0.25;
void show() { printf(“%f”,r); }
void small() {
 float r = 0.125; show();
}
int main (){
show(); small(); printf(“\n”);
show(); small(); printf(“\n”);
}

n  Under static scoping,
the output is

 0.25 0.25
 0.25 0.25
n  Under dynamic

scoping, the output is
 0.25 0.125
 0.25 0.125

Run-time Environments - 3

Y.N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 2

Outline of the Lecture

n  What is run-time support? (in part 1)
n  Parameter passing methods (in part 1)
n  Storage allocation (in part 2)
n  Activation records (in part 2)
n  Static scope and dynamic scope
n  Passing functions as parameters
n  Heap memory management
n  Garbage Collection

Y.N. Srikant 3

Static Scope and Dynamic Scope

n  Static Scope
q  A global identifier refers to the identifier with that name that

is declared in the closest enclosing scope of the program
text

q  Uses the static (unchanging) relationship between blocks in
the program text

n  Dynamic Scope
q  A global identifier refers to the identifier with that name

associated with the most recent activation record
q  Uses the actual sequence of calls that is executed in the

dynamic (changing) execution of the program
n  Both are identical as far as local variables are

concerned

Y.N. Srikant 4

Static Scope and Dynamic Scope :
An Example
int x = 1, y = 0;
int g(int z)
 { return x+z;}
int f(int y) {

 int x; x = y+1;
 return g(y*x);

}
y = f(3);

After the call to g,
Static scope: x = 1
Dynamic scope: x = 4

x 1

y 3

x 4

z 12

outer block

f(3)

g(12)

Stack of activation records
after the call to g

y 0

Y.N. Srikant 5

Static Scope and Dynamic Scope:
Another Example
float r = 0.25;
void show() { printf(“%f”,r); }
void small() {
 float r = 0.125; show();
}
int main (){
show(); small(); printf(“\n”);
show(); small(); printf(“\n”);
}

n  Under static scoping,
the output is

 0.25 0.25
 0.25 0.25
n  Under dynamic

scoping, the output is
 0.25 0.125
 0.25 0.125

Y.N. Srikant 6

Implementing Dynamic Scope –
Deep Access Method
n  Use dynamic link as static link
n  Search activation records on the stack to find the

first AR containing the non-local name
n  The depth of search depends on the input to the

program and cannot be determined at compile time
n  Needs some information on the identifiers to be

maintained at runtime within the ARs
n  Takes longer time to access globals, but no

overhead when activations begin and end

Deep Access Method - Example

Y.N. Srikant 7

x? Main

x? R

x? Q

 R
Base

Next

Currently active
procedure

Stack of activation
records

Calling sequence:
Main à R à Q à R Global

variable
search
direction

Y.N. Srikant 8

Implementing Dynamic Scope –
Shallow Access Method
n  Allocate maximum static storage needed for each name

(based on the types)
n  When a new AR is created for a procedure p, a local

name n in p takes over the static storage allocated to
name n
q  Global variables are also accessed from the static storage
q  Temporaries are located in the AR
q  Therefore, all variable (not temp) accesses use static addresses

n  The previous value of n held in static storage is saved in
the AR of p and is restored when the activation of p ends

n  Direct and quick access to globals, but some overhead is
incurred when activations begin and end

Shallow Access Method - Example

Y.N. Srikant 9

Space for temps and
for saving variables
from static storage

Space for temps and
for saving variables
from static storage

Space for temps and
for saving variables
from static storage

Base

Next

Currently active
procedure

Stack of activation
records

Calling sequence:
Main à R à Q à R

Main

R

Q

R

Static storage
for UNIQUE

names
(max storage

based on
types of the

names)

Y.N. Srikant 10

Passing Functions as Parameters

An example:
main()
{ int x = 4;
 int f (int y) {
 return x*y;
 }
 int g (int → int h){
 int x = 7;
 return h(3) + x;
 }
 g(f);
}

n  A language has first-class functions
if functions can be
q  declared within any scope
q  passed as arguments to other

functions
q  returned as results of functions

n  In a language with first-class
functions and static scope, a function
value is generally represented by a
closure
q  a pair consisting of a pointer to

function code and
q  a pointer to an activation record

n  Passing functions as arguments is
very useful in structuring of systems
using callbacks

Y.N. Srikant 11

Passing Functions as Parameters –
Implementation

x=4
main

SL

x=7

SL

y=3

g(f)

h(3)

SL chain

closure for
parameter h

pointer to
code for f

AR for the
call f(3)

An example:
main()
{ int x = 4;
 int f (int y) {
 return x*y;
 }
 int g (int → int h){
 int x = 7;
 return h(3) + x;
 }
 g(f);
}

Y.N. Srikant 12

Passing Functions as Parameters: Implementation

An example:
main()
{ int x = 4;
 int f (int y) {
 return x*y;
 }
 int g (int → int h){
 int x = 7;
 return h(3) + x;
 }
 g(f);
}

n  In this example, when executing the
call h(3), h is really f and 3 is the
parameter y of f

n  Without passing a closure, the AR of
the main program cannot be
accessed, and hence, the value of x
within f will not be 4

n  In the call g(f), f is passed as a
closure

n  Closure may also contain information
needed to set up AR (e.g., size of
space for local variables, etc.)

n  When processing the call h(3), after
setting up an AR for h (i.e., f), the SL
for the AR is set up using the AR
pointer in the closure for f that has
been passed to the call g(f)

Y.N. Srikant 13

Heap Memory Management

n  Heap is used for allocating space for objects created
at run time
q  For example: nodes of dynamic data structures such as

linked lists and trees
n  Dynamic memory allocation and deallocation based

on the requirements of the program
q  malloc() and free() in C programs
q  new() and delete() in C++ programs
q  new() and garbage collection in Java programs

n  Allocation and deallocation may be completely
manual (C/C++), semi-automatic (Java), or fully
automatic (Lisp)

Y.N. Srikant 14

Memory Manager

n  Manages heap memory by implementing
mechanisms for allocation and deallocation, both
manual and automatic

n  Goals
q  Space efficiency: minimize fragmentation
q  Program efficiency: take advantage of locality of objects in

memory and make the program run faster
q  Low overhead: allocation and deallocation must be efficient

n  Heap is maintained either as a doubly linked list or
as bins of free memory chunks (more on this later)

Y.N. Srikant 15

Allocation and Deallocation

n  In the beginning, the heap is one large and
contiguous block of memory

n  As allocation requests are satisfied, chunks are cut
off from this block and given to the program

n  As deallocations are made, chunks are returned to
the heap and are free to be allocated again (holes)

n  After a number of allocations and deallocations,
memory becomes fragmented and is not contiguous

n  Allocation from a fragmented heap may be made
either in a first-fit or best-fit manner

n  After a deallocation, we try to coalesce contiguous
holes and make a bigger hole (free chunk)

Y.N. Srikant 16

First-Fit and Best-Fit Allocation Strategies

n  The first-fit strategy picks the first available
chunk that satisfies the allocation request

n  The best-fit strategy searches and picks the
smallest (best) possible chunk that satisfies
the allocation request

n  Both of them chop off a block of the required
size from the chosen chunk, and return it to the
program

n  The rest of the chosen chunk remains in the
heap

Y.N. Srikant 17

First-Fit and Best-Fit Allocation Strategies

n  Best-fit strategy has been shown to reduce
fragmentation in practice, better than first-fit
strategy

n  Next-fit strategy tries to allocate the object in
the chunk that has been split recently
q  Tends to improve speed of allocation
q  Tends to improve spatial locality since objects

allocated at about the same time tend to have
similar reference patterns and life times (cache
behaviour may be better)

Y.N. Srikant 18

Bin-based Heap

n  Free space is organized into bins according to their
sizes (Lea Memory Manager in GCC)
q  Many more bins for smaller sizes, because there are many

more small objects
q  A bin for every multiple of 8-byte chunks from 16 bytes to

512 bytes
q  Then approximately logarithmically (double previous size)
q  Within each “small size bin”, chunks are all of the same

size
q  In others, they are ordered by size
q  The last chunk in the last bin is the wilderness chunk, which

gets us a chunk by going to the operating system

Y.N. Srikant 19

Bin-based Heap – An Example

16 24 32 231 ... 640 576 512 ...

 2 3 exact bins ... 64 65 sorted bins 127

Ref: From Lea’s
article on memory
manager in GCC

index

size

chunks

Y.N. Srikant 20

Managing and Coalescing Free Space

n  Should coalesce adjacent chunks and reduce
fragmentation
q  Many small chunks together cannot hold one large

object
q  In the Lea memory manager, no coalescing in the

exact size bins, only in the sorted bins
q  Boundary tags (free/used bit and chunk size) at

each end of a chunk (for both used and free
chunks)

q  A doubly linked list of free chunks

Y.N. Srikant 21

Boundary Tags and Doubly Linked List

0 200 200 0 0 100 100 0 1 120 120 1

Chunk A Chunk B Chunk C

free freed
just
now

occupied

... ..

3 adjacent chunks. Chunk B has been freed just now
and returned to the free list. Chunks A and B can be
merged, and this is done just before inserting it into
the linked list. The merged chunk AB may have to be
placed in a different bin.

Y.N. Srikant 22

Problems with Manual Deallocation

n  Memory leaks
q  Failing to delete data that cannot be referenced
q  Important in long running or nonstop programs

n  Dangling pointer dereferencing
q  Referencing deleted data

n  Both are serious and hard to debug
n  Solution: automatic garbage collection

Y.N. Srikant 23

Garbage Collection

n  Reclamation of chunks of storage holding objects
that can no longer be accessed by a program

n  GC should be able to determine types of objects
q  Then, size and pointer fields of objects can be determined

by the GC
q  Languages in which types of objects can be determined at

compile time or run-time are type safe
n  Java is type safe
n  C and C++ are not type safe because they permit type

casting, which creates new pointers
n  Thus, any memory location can be (theoretically) accessed at

any time and hence cannot be considered inaccessible

Y.N. Srikant 24

Reachability of Objects

n  The root set is all the data that can be accessed
(reached) directly by a program without having to
dereference any pointer

n  Recursively, any object whose reference is stored in
a field of a member of the root set is also reachable

n  New objects are introduced through object
allocations and add to the set of reachable objects

n  Parameter passing and assignments can propagate
reachability

n  Assignments and ends of procedures can terminate
reachability

Run-time Environments - 4

Y.N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 2

Outline of the Lecture

n  What is run-time support? (in part 1)
n  Parameter passing methods (in part 1)
n  Storage allocation (in part 2)
n  Activation records (in part 2)
n  Static scope and dynamic scope (in part 3)
n  Passing functions as parameters (in part 3)
n  Heap memory management (in part 3)
n  Garbage Collection

Y.N. Srikant 3

Problems with Manual Deallocation

n  Memory leaks
q  Failing to delete data that cannot be referenced
q  Important in long running or nonstop programs

n  Dangling pointer dereferencing
q  Referencing deleted data

n  Both are serious and hard to debug
n  Solution: automatic garbage collection

Y.N. Srikant 4

Garbage Collection

n  Reclamation of chunks of storage holding objects
that can no longer be accessed by a program

n  GC should be able to determine types of objects
q  Then, size and pointer fields of objects can be determined

by the GC
q  Languages in which types of objects can be determined at

compile time or run-time are type safe
n  Java is type safe
n  C and C++ are not type safe because they permit type

casting, which creates new pointers
n  Thus, any memory location can be (theoretically) accessed at

any time and hence cannot be considered inaccessible

Y.N. Srikant 5

Reachability of Objects

n  The root set is all the data that can be accessed
(reached) directly by a program without having to
dereference any pointer

n  Recursively, any object whose reference is stored in
a field of a member of the root set is also reachable

n  New objects are introduced through object
allocations and add to the set of reachable objects

n  Parameter passing and assignments can propagate
reachability

n  Assignments and ends of procedures can terminate
reachability

Y.N. Srikant 6

Reachability of Objects

n  Similarly, an object that becomes
unreachable can cause more objects to
become unreachable

n  A garbage collector periodically finds all
unreachable objects by one of the two
methods
q  Catch the transitions as reachable objects

become unreachable
q  Or, periodically locate all reachable objects and

infer that all other objects are unreachable

Y.N. Srikant 7

Reference Counting Garbage Collector

n  This is an approximation to the first approach
mentioned before

n  We maintain a count of the references to an
object, as the mutator (program) performs
actions that may change the reachability set

n  When the count becomes zero, the object
becomes unreachable

n  Reference count requires an extra field in the
object and is maintained as below

Y.N. Srikant 8

Maintaining Reference Counts

n  New object allocation. ref_count=1 for the new object
n  Parameter passing. ref_count++ for each object passed

into a procedure
n  Reference assignments. For u:=v, where u and v are

references, ref_count++ for the object *v, and ref_count--
for the object *u

n  Procedure returns. ref_count-- for each object pointed to
by the local variables

n  Transitive loss of reachability. Whenever ref_count of an
object becomes zero, we must also decrement the
ref_count of each object pointed to by a reference within
the object

Y.N. Srikant 9

Reference Counting GC:
Disadvantages and Advantages
n  High overhead due to reference maintenance
n  Cannot collect unreachable cyclic data structures

(ex: circularly linked lists), since the reference
counts never become zero

n  Garbage collection is incremental
q  overheads are distributed to the mutator’s operations and

are spread out throughout the life time of the mutator
n  Garbage is collected immediately and hence space

usage is low
n  Useful for real-time and interactive applications,

where long and sudden pauses are unacceptable

Y.N. Srikant 10

Unreachable Cyclic Data Structure

1

1

2

2

Indicated numbers
are reference counts
None of them are zero
None of the nodes can
be collected

None of the nodes
are in the root set

Mark-and-Sweep Garbage Collector

n  Memory recycling steps
q  Program runs and requests memory allocations
q  GC traces and finds reachable objects
q  GC reclaims storage from unreachable objects

n  Two phases
q  Marking reachable objects
q  Sweeping to reclaim storage

n  Can reclaim unreachable cyclic data structures
n  Stop-the-world algorithm

Y.N. Srikant 11

Mark-and-Sweep Algorithm - Mark

/* marking phase */
1.  Start scanning from root set, mark all reachable objects

(set reached-bit = 1), place them on the list Unscanned
2.  while (Unscanned ≠ Φ) do
 { object o = delete(Unscanned);
 for (each object o1 referenced in o) do
 { if (reached-bit(o1) == 0)
 { reached-bit(o1) = 1; place o1 on Unscanned;}
 }
 }

Y.N. Srikant 12

02/10/13 13

Mark-and-Sweep GC Example - Mark

0

0 0
0

0 0

0 0

0

0 0

1

0 0
1

0 0

0 0

0

0 0

1

1 1
1

1 1

0 0

0

0 0

1

1 1
1

1 1

1 1

0

0 0

1

1 1
1

1 1

1 1

0

0 0

1 2 3

5 4

Mark-and-Sweep Algorithm - Sweep

n  /* Sweeping phase, each object in the heap
 is inspected only once */
3.  Free = Φ;
 for (each object o in the heap) do
 { if (reached-bit(o) == 0) add(Free, o);
 else reached-bit(o) = 0;
 }

Y.N. Srikant 14

02/10/13 15

Mark-and-Sweep GC Example - Sweep

0

0 0
0

0 0

0 0

0

0 0

1

0 0
1

0 0

0 0

0

0 0

1

1 1
1

1 1

0 0

0

0 0

1

1 1
1

1 1

1 1

0

0 0

1

1 1
1

1 1

1 1

0

0 0

0

0 0
0

0 0

0 0

1 2 3

6 5 4

Control-Flow Graph and
Local Optimizations - Part 1

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Local Optimizations

Outline of the Lecture

What is code optimization and why is it needed?
Types of optimizations
Basic blocks and control flow graphs
Local optimizations
Building a control flow graph
Directed acyclic graphs and value numbering

Y.N. Srikant Local Optimizations

Machine-independent Code Optimization

Intermediate code generation process introduces many
inefficiencies

Extra copies of variables, using variables instead of
constants, repeated evaluation of expressions, etc.

Code optimization removes such inefficiencies and
improves code
Improvement may be time, space, or power consumption
It changes the structure of programs, sometimes of beyond
recognition

Inlines functions, unrolls loops, eliminates some
programmer-defined variables, etc.

Code optimization consists of a bunch of heuristics and
percentage of improvement depends on programs (may be
zero also)
Optimizations may be classified as local and global

Y.N. Srikant Local Optimizations

Local and Global Optimizations

Local optimizations: within basic blocks
Local common subexpression elimination
Dead code (instructions that compute a value that is never
used) elimination
Reordering computations using algebraic laws

Global optimizations: on whole procedures/programs
Global common sub-expression elimination
Constant propagation and constant folding
Loop invariant code motion
Partial redundancy elimination
Loop unrolling and function inlining
Vectorization and Concurrentization

Y.N. Srikant Local Optimizations

Basic Blocks and Control-Flow Graphs

Basic blocks are sequences of intermediate code with a
single entry and a single exit
We consider the quadruple version of intermediate code
here, to make the explanations easier
Control flow graphs show control flow among basic blocks
Basic blocks are represented as directed acyclic
blocks(DAGs), which are in turn represented using the
value-numbering method applied on quadruples
Optimizations on basic blocks

Y.N. Srikant Local Optimizations

Example of Basic Blocks and Control Flow Graph

Y.N. Srikant Local Optimizations

Algorithm for Partitioning into Basic Blocks

1 Determine the set of leaders, the first statements of basic
blocks

The first statement is a leader
Any statement which is the target of a conditional or
unconditional goto is a leader
Any statement which immediately follows a conditional goto
is a leader

2 A leader and all statements which follow it upto but not
including the next leader (or the end of the procedure), is
the basic block corresponding to that leader

3 Any statements, not placed in a block, can never be
executed, and may now be removed, if desired

Y.N. Srikant Local Optimizations

Example of Basic Blocks and CFG

Y.N. Srikant Local Optimizations

Control Flow Graph

The nodes of the CFG are basic blocks
One node is distinguished as the initial node
There is a directed edge B1 −→ B2, if B2 can immediately
follow B1 in some execution sequence; i.e.,

There is a conditional or unconditional jump from the last
statement of B1 to the first statement of B2, or
B2 immediately follows B1 in the order of the program, and
B1 does not end in an unconditional jump

A basic block is represented as a record consisting of
1 a count of the number of quadruples in the block
2 a pointer to the leader of the block
3 pointers to the predecessors of the block
4 pointers to the successors of the block

Note that jump statements point to basic blocks and not
quadruples so as to make code movement easy

Y.N. Srikant Local Optimizations

Example of a Directed Acyclic Graph (DAG)

Y.N. Srikant Local Optimizations

Value Numbering in Basic Blocks

A simple way to represent DAGs is via value-numbering
While searching DAGs represented using pointers etc., is
inefficient, value-numbering uses hash tables and hence is
very efficient
Central idea is to assign numbers (called value numbers)
to expressions in such a way that two expressions receive
the same number if the compiler can prove that they are
equal for all possible program inputs
We assume quadruples with binary or unary operators
The algorithm uses three tables indexed by appropriate
hash values:
HashTable, ValnumTable, and NameTable
Can be used to eliminate common sub-expressions, do
constant folding, and constant propagation in basic blocks
Can take advantage of commutativity of operators, addition
of zero, and multiplication by one

Y.N. Srikant Local Optimizations

Control-Flow Graph and
Local Optimizations - Part 2

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Local Optimizations

Outline of the Lecture

What is code optimization and why is it needed? (in part 1)
Types of optimizations (in part 1)
Basic blocks and control flow graphs (in part 1)
Local optimizations (in part 1)
Building a control flow graph (in part 1)
Directed acyclic graphs and value numbering

Y.N. Srikant Local Optimizations

Example of a Directed Acyclic Graph (DAG)

Y.N. Srikant Local Optimizations

Value Numbering in Basic Blocks

A simple way to represent DAGs is via value-numbering
While searching DAGs represented using pointers etc., is
inefficient, value-numbering uses hash tables and hence is
very efficient
Central idea is to assign numbers (called value numbers)
to expressions in such a way that two expressions receive
the same number if the compiler can prove that they are
equal for all possible program inputs
We assume quadruples with binary or unary operators
The algorithm uses three tables indexed by appropriate
hash values:
HashTable, ValnumTable, and NameTable
Can be used to eliminate common sub-expressions, do
constant folding, and constant propagation in basic blocks
Can take advantage of commutativity of operators, addition
of zero, and multiplication by one

Y.N. Srikant Local Optimizations

Data Structures for Value Numbering

In the field Namelist, first name is the defining occurrence and
replaces all other names with the same value number with itself
(or its constant value)

Value number

Expression Value number

(indexed by name hash value)

Constant value

(indexed by expression hash value)

ValnumTable entry

 Name

 Name list Constflag

(indexed by value number)
NameTable entry

HashTable entry

Y.N. Srikant Local Optimizations

Example of Value Numbering

HLL Program Quadruples before Quadruples after
Value-Numbering Value-Numbering

a = 10 1. a = 10 1. a = 10
b = 4∗a 2. b = 4∗a 2. b = 40
c = i∗ j+b 3. t1 = i∗ j 3. t1 = i∗ j
d = 15∗a∗ c 4. c = t1+b 4. c = t1+40
e = i 5. t2 = 15∗a 5. t2 = 150
c = e∗ j+ i∗a 6. d = t2∗ c 6. d = 150∗ c

7. e = i 7. e = i
8. t3 = e∗ j 8. t3 = i∗ j
9. t4 = i∗a 9. t4 = i∗10

10. c = t3+ t4 10. c = t1+ t4
(Instructions 5 and 8
can be deleted)

1

Y.N. Srikant Local Optimizations

Running the algorithm through the example (1)

1 a = 10 :

a is entered into ValnumTable (with a vn of 1, say) and into
NameTable (with a constant value of 10)

2 b = 4 ∗ a :
a is found in ValnumTable, its constant value is 10 in
NameTable

We have performed constant propagation
4 ∗ a is evaluated to 40, and the quad is rewritten
We have now performed constant folding
b is entered into ValnumTable (with a vn of 2) and into
NameTable (with a constant value of 40)

3 t1 = i ∗ j :
i and j are entered into the two tables with new vn (as
above), but with no constant value
i ∗ j is entered into HashTable with a new vn
t1 is entered into ValnumTable with the same vn as i ∗ j

Y.N. Srikant Local Optimizations

Running the algorithm through the example (2)

4 Similar actions continue till e = i
e gets the same vn as i

5 t3 = e ∗ j :
e and i have the same vn
hence, e ∗ j is detected to be the same as i ∗ j
since i ∗ j is already in the HashTable, we have found a
common subexpression
from now on, all uses of t3 can be replaced by t1
quad t3 = e ∗ j can be deleted

6 c = t3 + t4 :

t3 and t4 already exist and have vn
t3 + t4 is entered into HashTable with a new vn
this is a reassignment to c
c gets a different vn, same as that of t3 + t4

7 Quads are renumbered after deletions

Y.N. Srikant Local Optimizations

Example: HashTable and ValNumTable

HashTable
Expression Value-Number
i∗ j 5
t1+40 6
150∗ c 8
i∗10 9
t1+ t4 11

ValNumTable
Name Value-Number
a 1
b 2
i 3
j 4
t1 5
c 6,11
t2 7
d 8
e 3
t3 5
t4 10

1

Y.N. Srikant Local Optimizations

Handling Commutativity etc.

When a search for an expression i + j in HashTable fails,
try for j + i
If there is a quad x = i + 0, replace it with x = i
Any quad of the type, y = j ∗ 1 can be replaced with y = j
After the above two types of replacements, value numbers
of x and y become the same as those of i and j ,
respectively
Quads whose LHS variables are used later can be marked
as useful
All unmarked quads can be deleted at the end

Y.N. Srikant Local Optimizations

Handling Array References

Consider the sequence of quads:
1 X = A[i]
2 A[j] = Y : i and j could be the same
3 Z = A[i]: in which case, A[i] is not a common

subexpression here

The above sequence cannot be replaced
by: X = A[i]; A[j] = Y ; Z = X
When A[j] = Y is processed during value numbering, ALL
references to array A so far are searched in the tables and
are marked KILLED - this kills quad 1 above
When processing Z = A[i], killed quads not used for CSE
Fresh table entries are made for Z = A[i]
However, if we know apriori that i 6= j , then A[i] can be
used for CSE

Y.N. Srikant Local Optimizations

Handling Pointer References

Consider the sequence of quads:
1 X = ∗p
2 ∗q = Y : p and q could be pointing to the same object
3 Z = ∗p: in which case, ∗p is not a common subexpression

here

The above sequence cannot be replaced
by: X = ∗p; ∗q = Y ; Z = X
Suppose no pointer analysis has been carried out

p and q can point to any object in the basic block
Hence, When ∗q = Y is processed during value
numbering, ALL table entries created so far are marked
KILLED - this kills quad 1 above as well
When processing Z = ∗p, killed quads not used for CSE
Fresh table entries are made for Z = ∗p

Y.N. Srikant Local Optimizations

Handling Pointer References and Procedure Calls

However, if we know apriori which objects p and q point to,
then table entries corresponding to only those objects
need to killed
Procedure calls are similar
With no dataflow analysis, we need to assume that a
procedure call can modify any object in the basic block

changing call-by-reference parameters and global variables
within procedures will affect other variables of the basic
block as well

Hence, while processing a procedure call, ALL table
entries created so far are marked KILLED
Sometimes, this problem is avoided by making a procedure
call a separate basic block

Y.N. Srikant Local Optimizations

Extended Basic Blocks

A sequence of basic blocks B1,B2, ...,Bk , such that Bi is
the unique predecessor of Bi+1(i ≤ i < k), and B1 is either
the start block or has no unique predecessor
Extended basic blocks with shared blocks can be
represented as a tree
Shared blocks in extended basic blocks require scoped
versions of tables
The new entries must be purged and changed entries must
be replaced by old entries
Preorder traversal of extended basic block trees is used

Y.N. Srikant Local Optimizations

Extended Basic Blocks and their Trees

Start

B2

B1

B4B3

B5 B6

B7

Stop

Start

B1

B2

B3 B4

B5 B6

B7

Stop

T1

T2

T3

Extended basic blocks

Start, B1
B2, B3, B5
B2, B3, B6
B2, B4
B7, Stop

Y.N. Srikant Local Optimizations

Value Numbering with Extended Basic Blocksfuntion visit-ebb-tree(e) // e is a node in the treebegin// From now on, the new names will be entered with a new sope into the tables.// When searhing the tables, we always searh beginning with the urrent sope// and move to enlosing sopes. This is similar to the proessing involved with// symbol tables for lexially soped languagesvalue-number(e:B);// Proess the blok e:B using the basi blok version of the algorithmif (e:left 6= null) then visit-ebb-tree(e:left);if (e:right 6= null) then visit-ebb-tree(e:right);remove entries for the new sope from all the tablesand undo the hanges in the tables of enlosing sopes;endbegin // main alling loopfor eah tree t do visit-ebb-tree(t);// t is a tree representing an extended basi blokend

1

Y.N. Srikant Local Optimizations

Machine Code Generation - 1

Y. N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 2

Outline of the Lecture

n  Machine code generation – main issues
n  Samples of generated code
n  Two Simple code generators
n  Optimal code generation

q  Sethi-Ullman algorithm
q  Dynamic programming based algorithm
q  Tree pattern matching based algorithm

n  Code generation from DAGs
n  Peephole optimizations

Y.N. Srikant 3

Code Generation – Main Issues (1)

n  Transformation:
q  Intermediate code à m/c code (binary or assembly)
q  We assume quadruples and CFG to be available

n  Which instructions to generate?
q  For the quadruple A = A+1, we may generate

n  Inc A or
n  Load A, R1
 Add #1, R1
 Store R1, A

q  One sequence is faster than the other (cost
implication)

Y.N. Srikant 4

Code Generation – Main Issues (2)

n  In which order?
q  Some orders may use fewer registers and/or may be faster

n  Which registers to use?
q  Optimal assignment of registers to variables is difficult to

achieve
n  Optimize for memory, time or power?
n  Is the code generator easily retargetable to other

machines?
q  Can the code generator be produced automatically from

specifications of the machine?

Y.N. Srikant 5

Samples of Generated Code

n  B = A[i]
 Load i, R1 // R1 = i
 Mult R1,4,R1// R1 = R1*4
 // each element of array
 // A is 4 bytes long
 Load A(R1), R2// R2=(A+R1)
 Store R2, B// B = R2
n  X[j] = Y
 Load Y, R1// R1 = Y
 Load j, R2// R2 = j
 Mult R2, 4, R2// R2=R2*4
 Store R1, X(R2)// X(R2)=R1

n  X = *p
 Load p, R1
 Load 0(R1), R2
 Store R2, X
n  *q = Y
 Load Y, R1
 Load q, R2
 Store R1, 0(R2)
n  if X < Y goto L
 Load X, R1
 Load Y, R2
 Cmp R1, R2
 Bltz L

Y.N. Srikant 6

Samples of Generated Code –
Static Allocation (no JSR instruction)

// Code for function F1
action code seg 1

call F2
action code seg 2

Halt

// Code for function F2
action code seg 3

return

return address

data array
A

variable x
variable y

return address

data array
B

variable m

0
4

72

0
4

40
44

Three Adress Code
Activation Record
for F1 (48 bytes)

Activation Record
for F2 (76 bytes)

parameter 1

Y.N. Srikant 7

Samples of Generated Code –
Static Allocation (no JSR instruction)
// Code for function F1
200: Action code seg 1
// Now store return address
240: Move #264, 648
252: Move val1, 652
256: Jump 400 // Call F2
264: Action code seg 2
280: Halt

 ...
// Code for function F2
400: Action code seg 3
// Now return to F1
440: Jump @648

 ...

//Activation record for F1
//from 600-647
600: //return address
604: //space for array A
640: //space for variable x
644: //space for variable y
//Activation record for F2
//from 648-723
648: //return address
652: // parameter 1
656: //space for array B

 ...
720: //space for variable m

Machine Code Generation - 2

Y. N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 2

Outline of the Lecture

n  Mach. code generation – main issues (in part 1)
n  Samples of generated code
n  Two Simple code generators
n  Optimal code generation

q  Sethi-Ullman algorithm
q  Dynamic programming based algorithm
q  Tree pattern matching based algorithm

n  Code generation from DAGs
n  Peephole optimizations

Y.N. Srikant 3

Samples of Generated Code –
Static Allocation (no JSR instruction)

// Code for function F1
action code seg 1

call F2
action code seg 2

Halt

// Code for function F2
action code seg 3

return

return address

data array
A

variable x
variable y

return address

data array
B

variable m

0
4

72

0
4

40
44

Three Adress Code
Activation Record
for F1 (48 bytes)

Activation Record
for F2 (76 bytes)

parameter 1

Y.N. Srikant 4

Samples of Generated Code –
Static Allocation (no JSR instruction)
// Code for function F1
200: Action code seg 1
// Now store return address
240: Move #264, 648
252: Move val1, 652
256: Jump 400 // Call F2
264: Action code seg 2
280: Halt

 ...
// Code for function F2
400: Action code seg 3
// Now return to F1
440: Jump @648

 ...

//Activation record for F1
//from 600-647
600: //return address
604: //space for array A
640: //space for variable x
644: //space for variable y
//Activation record for F2
//from 648-723
648: //return address
652: // parameter 1
656: //space for array B

 ...
720: //space for variable m

Y.N. Srikant 5

Samples of Generated Code –
Static Allocation (with JSR instruction)

// Code for function F1
action code seg 1

call F2
action code seg 2

Halt

// Code for function F2
action code seg 3

return

data array
A

variable x
variable y

data array
B

variable m

0

68

0

36
40

Three Adress Code
Activation Record
for F1 (44 bytes)

Activation Record
for F2 (72 bytes)

return address need not be stored

Y.N. Srikant 6

Samples of Generated Code –
Static Allocation (with JSR instruction)
// Code for function F1
200: Action code seg 1
// Now jump to F2, return addr
// is stored on hardware stack
240: JSR 400 // Call F2
248: Action code seg 2
268: Halt

 ...
// Code for function F2
400: Action code seg 3
// Now return to F1 (addr 248)
440: return

 ...

//Activation record for F1
//from 600-643
600: //space for array A
636: //space for variable x
640: //space for variable y
//Activation record for F2
//from 644-715
644: //space for array B

 ...
712: //space for variable m

Y.N. Srikant 7

Samples of Generated Code –
Dynamic Allocation (no JSR instruction)

// Code for function F1
action code seg 1

call F2
action code seg 2

return

// Code for function F2
action code seg 3

call F1
action code seg 4

call F2
action code seg 5

return

return address

local data
and other

information

return address

local data
and other

information

0
4

92

0
4

64

Three Adress Code
Activation Record
for F1 (68 bytes)

Activation Record
for F2 (96 bytes)

parameter 1

Y.N. Srikant 8

Samples of Generated Code –
Dynamic Allocation (no JSR instruction)
//Initialization
100: Move #800, SP

 ...
//Code for F1
200: Action code seg 1
230: Add #96, SP
238: Move #258, @SP
246: Move val1, @SP+4
250: Jump 300
258: Sub #96, SP
266: Action code seg 2
296: Jump @SP

//Code for F2
300: Action code seg 3
340: Add #68, SP
348: Move #364, @SP
356: Jump 200
364: Sub #68, SP
372: Action code seg 4
400: Add #96, SP
408: Move #424, @SP
416: Move val2, @SP+4
420: Jump 300
428: Sub #96, SP
436: Action code seg 5
480: Jump @SP

Y.N. Srikant 9

Samples of Generated Code –
Dynamic Allocation (with JSR instruction)

// Code for function F1
action code seg 1

call F2
action code seg 2

return

// Code for function F2
action code seg 3

call F1
action code seg 4

call F2
action code seg 5

return

local data
and other

information

local data
and other

information

0

88

0

60

Three Adress Code
Activation Record
for F1 (64 bytes)

Activation Record
for F2 (92 bytes)

parameter 1

Y.N. Srikant 10

Samples of Generated Code –
Dynamic Allocation (with JSR instruction)
//Initialization
100: Move #800, SP

 ...
//Code for F1
200: Action code seg 1
230: Add #92, SP
238: Move val1, @SP
242: JSR 290
250: Sub #92, SP
258: Action code seg 2
286: return

//Code for F2
290: Action code seg 3
330: Add #64, SP
338: JSR 200
346: Sub #64, SP
354: Action code seg 4
382: Add #92, SP
390: Move val2, @SP
394: JSR 290
402: Sub #92, SP
410: Action code seg 5
454: return

Y.N. Srikant 11

A Simple Code Generator – Scheme A

n  Treat each quadruple as a ‘macro’
q  Example: The quad A := B + C will result in

 Load B, R1 OR Load B, R1
 Load C, R2
 Add R2, R1 Add C, R1
 Store R1, A Store R1, A

q  Results in inefficient code
n  Repeated load/store of registers

q  Very simple to implement

Y.N. Srikant 12

A Simple Code Generator – Scheme B

n  Track values in registers and reuse them
q  If any operand is already in a register, take advantage of it
q  Register descriptors

n  Tracks <register, variable name> pairs
n  A single register can contain values of multiple

names, if they are all copies
q  Address descriptors

n  Tracks <variable name, location> pairs
n  A single name may have its value in multiple

locations, such as, memory, register, and stack

Y.N. Srikant 13

A Simple Code Generator – Scheme B

n  Leave computed result in a register as long as
possible

n  Store only at the end of a basic block or when that
register is needed for another computation
q  A variable is live at a point, if it is used later, possibly in

other blocks – obtained by dataflow analysis
q  On exit from a basic block, store only live variables which

are not in their memory locations already (use address
descriptors to determine the latter)

q  If liveness information is not known, assume that all
variables are live at all times

Y.N. Srikant 14

Example

n  A := B+C
q  If B and C are in registers R1 and R2, then

generate
n  ADD R2,R1 (cost = 1, result in R1)

q  legal only if B is not live after the statement

q  If R1 contains B, but C is in memory
n  ADD C,R1 (cost = 2, result in R1) or
n  LOAD C, R2
 ADD R2,R1 (cost = 3, result in R1)

q  legal only if B is not live after the statement
q  attractive if the value of C is subsequently used (it can be

taken from R2)

Y.N. Srikant 15

Next Use Information

n  Next use info is used in code generation and register allocation
n  Next use of A in quad i is j if
 Quad i : A = ... (assignment to A)
 (control flows from i to j with no assignments to A)

 Quad j : = A op B (usage of A)
n  In computing next use, we assume that on exit from the basic

block
q  All temporaries are considered non-live
q  All programmer defined variables (and non-temps) are live

n  Each procedure/function call is assumed to start a basic block
n  Next use is computed on a backward scan on the quads in a

basic block, starting from the end
n  Next use information is stored in the symbol table

Y.N. Srikant 16

Example of computing Next Use

3 T1 := 4 * I T1 – (nlv, lu 0, nu 5), I – (lv, lu 3, nu 10)
4 T2 := addr(A) – 4 T2 – (nlv, lu 0, nu 5)
5 T3 := T2[T1] T3 – (nlv, lu 0, nu 8), T2 – (nlv, lu 5, nnu),

T1 – (nlv, lu 5, nu 7)
6 T4 := addr(B) – 4 T4 – (nlv, lu 0, nu 7)
7 T5 := T4[T1] T5 – (nlv, lu 0, nu 8), T4 – (nlv, lu 7, nnu),

T1 – (nlv, lu 7, nnu)
8 T6 := T3 * T5 T6 – (nlv, lu 0, nu 9),T3 – (nlv, lu 8, nnu),

T5 – (nlv, lu 8, nnu)
9 PROD := PROD + T6 PROD – (lv, lu 9, nnu), T6 – (nlv, lu 9, nnu)

10 I := I + 1 I – (lv, lu 10, nu 11)
11 if I ≤ 20 goto 3 I – (lv, lu 11, nnu)

Y.N. Srikant 17

Scheme B – The algorithm

n  We deal with one basic block at a time
n  We assume that there is no global register allocation
n  For each quad A := B op C do the following

q  Find a location L to perform B op C
n  Usually a register returned by GETREG() (could be a mem loc)

q  Where is B?
n  B’ , found using address descriptor for B
n  Prefer register for B’ , if it is available in memory and register
n  Generate Load B’ , L (if B’ is not in L)

q  Where is C?
n  C’ , found using address descriptor for C
n  Generate op C’ , L

q  Update descriptors for L and A
q  If B/C have no next uses, update descriptors to reflect this

information

Y.N. Srikant 18

Function GETREG()

Finds L for computing A := B op C
1. If B is in a register (say R), R holds no other names, and

q  B has no next use, and B is not live after the block, then return R
2. Failing (1), return an empty register, if available
3. Failing (2)

q  If A has a next use in the block, OR
 if B op C needs a register (e.g., op is an indexing operator)

n  Use a heuristic to find an occupied register
q  a register whose contents are referenced farthest in future, or
q  the number of next uses is smallest etc.

n  Spill it by generating an instruction, MOV R, mem
q  mem is the memory location for the variable in R
q  That variable is not already in mem

n  Update Register and Address descriptors
4. If A is not used in the block, or no suitable register can be found

q  Return a memory location for L

Y.N. Srikant 19

Example

Statements Code Generated Register
Descriptor

Address
Descriptor

T := A * B Load A,R0
Mult B, R0

R0 contains T T in R0

U := A + C Load A, R1
Add C, R1

R0 contains T
R1 contains U

T in R0
U in R1

V := T - U Sub R1, R0 R0 contains V
R1 contains U

U in R1
V in R0

W := V * U Mult R1, R0 R0 contains W W in R0

Store R0, W W in memory
(restored)

T,U, and V are temporaries - not live at the end of the block
W is a non-temporary - live at the end of the block, 2 registers

Y.N. Srikant 20

Optimal Code Generation
- The Sethi-Ullman Algorithm
n  Generates the shortest sequence of instructions

q  Provably optimal algorithm (w.r.t. length of the sequence)
n  Suitable for expression trees (basic block level)
n  Machine model

q  All computations are carried out in registers
q  Instructions are of the form op R,R or op M,R

n  Always computes the left subtree into a register
and reuses it immediately

n  Two phases
q  Labelling phase
q  Code generation phase

Y.N. Srikant 21

The Labelling Algorithm

n  Labels each node of the tree with an integer:
q  fewest no. of registers required to evaluate the tree

with no intermediate stores to memory
q  Consider binary trees

n  For leaf nodes
q  if n is the leftmost child of its parent then

 label(n) := 1 else label(n) := 0
n  For internal nodes

q  label(n) = max (l1, l2), if l1<> l2

 = l1 + 1, if l1 = l2

Y.N. Srikant 22

Labelling - Example
n5

n3

n1

a b

n2

c d

n4

e f

R0

R0

R0

R1

R1
R1

R1

R0

1 0 1 0

1 1

2

2

1

1 0

Machine Code Generation - 3

Y. N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 2

Outline of the Lecture

n  Mach. code generation – main issues (in part 1)
n  Samples of generated code (in part 2)
n  Two Simple code generators (in part 2)
n  Optimal code generation

q  Sethi-Ullman algorithm
q  Dynamic programming based algorithm
q  Tree pattern matching based algorithm

n  Code generation from DAGs
n  Peephole optimizations

Y.N. Srikant 3

Optimal Code Generation
- The Sethi-Ullman Algorithm
n  Generates the shortest sequence of instructions

q  Provably optimal algorithm (w.r.t. length of the sequence)
n  Suitable for expression trees (basic block level)
n  Machine model

q  All computations are carried out in registers
q  Instructions are of the form op R,R or op M,R

n  Always computes the left subtree into a register
and reuses it immediately

n  Two phases
q  Labelling phase
q  Code generation phase

Y.N. Srikant 4

The Labelling Algorithm

n  Labels each node of the tree with an integer:
q  fewest no. of registers required to evaluate the tree

with no intermediate stores to memory
q  Consider binary trees

n  For leaf nodes
q  if n is the leftmost child of its parent then

 label(n) := 1 else label(n) := 0
n  For internal nodes

q  label(n) = max (l1, l2), if l1<> l2

 = l1 + 1, if l1 = l2

Y.N. Srikant 5

Labelling - Example
n5

n3

n1

a b

n2

c d

n4

e f

R0

R0

R0

R1

R1
R1

R1

R0

1 0 1 0

1 1

2

2

1

1 0

Y.N. Srikant 6

Code Generation Phase –
Procedure GENCODE(n)
n  RSTACK – stack of registers, R0,...,R(r-1)
n  TSTACK – stack of temporaries, T0,T1,...
n  A call to Gencode(n) generates code to evaluate a

tree T, rooted at node n, into the register top
(RSTACK) ,and
q  the rest of RSTACK remains in the same state as the one

before the call
n  A swap of the top two registers of RSTACK is

needed at some points in the algorithm to ensure
that a node is evaluated into the same register as its
left child.

Y.N. Srikant 7

The Code Generation Algorithm (1)

Procedure gencode(n);
{ /* case 0 */
 if
 n is a leaf representing
 operand N and is the
 leftmost child of its parent
 then
 print(LOAD N, top(RSTACK))

n
N

leaf node

Y.N. Srikant 8

The Code Generation Algorithm (2)

/* case 1 */
else if
 n is an interior node with operator
 OP, left child n1, and right child n2
then
 if label(n2) == 0 then {
 let N be the operand for n2;
 gencode(n1);
 print(OP N, top(RSTACK));
 }

n

n1 n2
N

leaf node

OP

Y.N. Srikant 9

The Code Generation Algorithm (3)

/* case 2 */
else if ((1 ≤ label(n1) < label(n2))
 and(label(n1) < r))
then {
 swap(RSTACK); gencode(n2);
 R := pop(RSTACK); gencode(n1);
 /* R holds the result of n2 */
 print(OP R, top(RSTACK));
 push (RSTACK,R);
 swap(RSTACK);
 }

n

n1 n2

> label(n1)

OP

< r

The swap() function ensures
that a node is evaluated into
the same register as its left
child

Y.N. Srikant 10

The Code Generation Algorithm (4)

/* case 3 */
else if ((1 < label(n2) < label(n1))
 and(label(n2) < r))
then {
 gencode(n1);
 R := pop(RSTACK); gencode(n2);
 /* R holds the result of n1 */
 print(OP top(RSTACK), R);
 push (RSTACK,R);
 }

n

n1 n2

< r

OP

≥ label(n2)

Y.N. Srikant 11

The Code Generation Algorithm (5)

/* case 4, both labels are > r */
else {
 gencode(n2); T:= pop(TSTACK);
 print(LOAD top(RSTACK), T);
 gencode(n1);
 print(OP T, top(RSTACK));
 push(TSTACK, T);
 }
}

n

n1 n2

≥ r

OP

≥ r

Y.N. Srikant 12

Code Generation Phase – Example 1

No. of registers = r = 2

n5 à n3 à n1 à a à Load a, R0
 à opn1 b, R0
 à n2 à c à Load c, R1
 à opn2 d, R1
 à opn3 R1, R0
 à n4 à e à Load e, R1
 à opn4 f, R1
 à opn5 R1, R0

n5

n3 n4

n1 n2 e f

a b c d

1 1

1 2

2

Y.N. Srikant 13

Code Generation Phase – Example 2

n5

n3 n4

n1 n2 e f

a b c d

No. of registers = r = 1.
Here we choose rst first so that lst can be
computed into R0 later (case 4)

n5 à n4 à e à Load e, R0
 à opn4 f, R0
 à Load R0, T0 {release R0}
 à n3 à n2 à c à Load c, R0
 à opn2 d, R0
 à Load R0, T1 {release R0}
 à n1 à a à Load a, R0
 à opn1 b, R0
 à opn3 T1, R0 {release T1}
 à opn5 T0, R0 {release T0}

1 1

1 2

2

Y.N. Srikant 14

Dynamic Programming based
Optimal Code Generation for Trees
n  Broad class of register machines

q  r interchangeable registers, R0,...,Rr-1
q  Instructions of the form Ri := E

n  If E involves registers, Ri must be one of them
n  Ri := Mj, Ri := Ri op Rj, Ri := Ri op Mj, Ri := Rj, Mi := Rj

n  Based on principle of contiguous evaluation
n  Produces optimal code for trees (basic block

level)
n  Can be extended to include a different cost

for each instruction

Y.N. Srikant 15

Contiguous Evaluation

n  First evaluate subtrees of T
that need to be evaluated into
memory. Then,
q  Rest of T1, T2, op, in that

order, OR,
q  Rest of T2, T1, op, in that

order
n  Part of T1, part of T2, part of

T1 again, etc., is not
contiguous evaluation

n  Contiguous evaluation is
optimal!
q  No higher cost and no more

registers than optimal
evaluation

T1 T2

op

Tree T

Y.N. Srikant 16

The Algorithm (1)

1.  Compute in a bottom-up manner, for each
node n of T, an array of costs, C

q  C[i] = min cost of computing the complete
subtree rooted at n, assuming i registers to be
available

n  Consider each machine instruction that matches at n
and consider all possible contiguous evaluation orders
(using dynamic programming)

n  Add the cost of the instruction that matched at node n

Y.N. Srikant 17

The Algorithm (2)

n  Using C, determine the subtrees that must be
computed into memory (based on cost)

n  Traverse T, and emit code
q  memory computations first
q  rest later, in the order needed to obtain optimal

cost
n  Cost of computing a tree into memory = cost

of computing the tree using all registers + 1
(store cost)

Y.N. Srikant 18

An Example
Max no. of registers = 2

Node 2: matching instructions

Ri = Ri – M (i = 0,1) and
Ri = Ri – Rj (i,j = 0,1)

C2[1] = C4[1] + C5[0] + 1
 = 1+0+1 = 2

C2[2] = Min{ C4[2] + C5[1] + 1,
 C4[2] + C5[0] + 1,
 C4[1] + C5[2] + 1,
 C4[1] + C5[1] + 1,
 C4[1] + C5[0] + 1}
 = Min{1+1+1,1+0+1,1+1+1,
 1+1+1,1+0+1}
 = Min{3,2,3,3,2} = 2

C2[0] = 1+ C2[2] = 1+2 = 3

e

/ b

d

b /

e d

+

- *

a c

1

2 3

4 5 6 7

8 9

R0=R1+R0

R1=R1 - b

R1= a

R0=R0*R1

R0= c

R1=R1/e

R1=d

(0,1,1)

(8,8,7)

(5,5,4)

(3,2,2) (0,1,1) (0,1,1)

(0,1,1) (0,1,1,)

(3,2,2)

R0 = c
R1 = d
R1 = R1 / e
R0 = R0 * R1
R1 = a
R1 = R1 – b
R0 = R1 + R0

Generated sequence
of instructions

Y.N. Srikant 19

Example – continued
Cost of computing node 3 with 2 registers
#regs for node 6 #regs for node 7 cost for node 3

2 0 1+3+1 = 5
2 1 1+2+1 = 4
1 0 1+3+1 = 5
1 1 1+2+1 = 4
1 2 1+2+1 = 4

min value 4

Cost of computing with 1 register = 5 (row 4, red)
Cost of computing into memory = 4 + 1 = 5

Triple = (5,5,4)

Y.N. Srikant 20

Example – continued
Traversal and Generating Code
Min cost for node 1=7, Instruction: R0 := R1+R0

Compute RST(3) with 2 regs into R0
Compute LST(2) into R1

For node 3, instruction: R0 := R0 * R1
Compute RST(7) with 2 regs into R1
Compute LST(6) into R0

For node 7, instruction: R1 := R1 / e
Compute RST(9) into memory
(already available)
Compute LST(8) into R1

For node 8, instruction: R1 := d
For node 6, instruction: R0 := c
For node 2, instruction: R1 := R1 – b

Compute RST(5) into memory (available already)
Compute LST(4) into R1

For node 4, instruction: R1 := a

b /

e d

+

- *

a

1

2 3

4 5 6 7

8 9

R0=R1+R0

R1=R1 - b

R1= a

R0=R0*R1

R0= c

R1=R1/e

R1=d

(0,1,1)

(8,8,7)

(5,5,4)

(3,2,2) (0,1,1) (0,1,1)

(0,1,1) (0,1,1,)

(3,2,2)

+

*

c

Machine Code Generation - 4

Y. N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 2

Outline of the Lecture

n  Mach. code generation – main issues (in part 1)
n  Samples of generated code (in part 2)
n  Two Simple code generators (in part 2)
n  Optimal code generation

q  Sethi-Ullman algorithm (in part 3)
q  Dynamic programming based algorithm (in part 3)
q  Tree pattern matching based algorithm

n  Code generation from DAGs
n  Peephole optimizations

Code Generation based on Dynamic
Programming - Limitations
n  Several instructions require even-odd register

pairs – (R0,R1), (R2,R3), etc.
q  example: multiplication in x86
q  may require non-contiguous evaluation to ensure

optimality
q  cannot be handled by DP

Y.N. Srikant 3

Y.N. Srikant 4

Code Generation by Tree Rewriting

n  Caters to complex instruction sets and very
general machine models

n  Can produce locally optimal code (basic
block level)

n  Non-contiguous evaluation orders are
possible without sacrificing optimality

n  Easily retargetable to different machines
n  Automatic generation from specifications is

possible

Y.N. Srikant 5

Example
:=

ind +

const1 memb +

+ ind

+

consti regsp

regsp consta

Tree intermediate
code for a[i] = b+1,
a and i are local, and
b is global

Some Tree Rewriting Rules and
Associated Actions
1.  regi ß consta { Load #a, regi }
2.  regi ß +(regi , regj) { Add regi , regj }
3.  regi ß ind (+(constc , regj)) { Load #c(regj), regi }
4.  regi ß +(regi , ind (+(constc , regj)))
 { Add #c(regj), regi }
5.  regi ß mema { Load b, regi }

6.  regi ß +(regi , const1) { Inc regi }
7.  mem ß :=(ind (regi) , regj) { Load regj , *regi }

Y.N. Srikant 6

Y.N. Srikant 7

Match #1
:=

ind +

const1 memb +

+ ind

+

consti regsp

regsp consta

Pattern
regi ß consta

Code

Load #a, R0

Code so far:
Load #a, R0

reg0

Y.N. Srikant 8

Match #2
:=

ind +

const1 memb +

+ ind

+

consti regsp

regsp reg0

Pattern
regi ß +(regi , regj)

Code

Add SP, R0

Code so far:
Load #a, R0
Add SP, R0

reg0

Y.N. Srikant 9

ind

:=

Match #3

+

const1 memb +

reg0 ind

+

consti regsp

Pattern
regi ß ind (+(constc , regj))

OR
regi ß +(regi , ind (+(constc , regj)))

Code for 2nd alternative (chosen)

Add #i(SP), R0

Code so far:
Load #a, R0
Add SP, R0
Add #i(SP), R0

reg0

Y.N. Srikant 10

Match #4
:=

ind +

const1 memb

Pattern
regi ß mema

Code

Load b, R1

reg0
Code so far:
Load #a, R0
Add SP, R0
Add #i(SP), R0
Load b, R1

reg1

Y.N. Srikant 11

Match #5
:=

ind +

const1 reg1 reg0

Pattern
regi ß +(regi , const1)

Code
Inc R1

Code so far:
Load #a, R0
Add SP, R0
Add #i(SP), R0
Load b, R1
Inc R1

reg1

Y.N. Srikant 12

Match #6
:=

ind reg1

reg0

Pattern
mem ß :=(ind (regi) , regj)

Code

Load R1, *R0

Code so far:
Load #a, R0
Add SP, R0
Add #i(SP), R0
Load b, R1
Inc R1
Load R1, *R0

mem

Y.N. Srikant 13

Code Generator Generators (CGG)

n  Based on tree pattern matching and dynamic
programming

n  Accept tree patterns, associated costs, and
semantic actions (for register allocation and object
code emission)

n  Produce tree matchers that produce a cover of
minimum cost

n  Make two passes
q  First pass is a bottom-up pass and finds a set of patterns

that cover the tree with minimum cost
q  Second pass executes the semantic actions associated

with the minimum cost patterns at the nodes they matched
n  Twig, BURG, and IBURG are such CGGs

Y.N. Srikant 14

Code Generator Generators (2)

n  IBURG
q  Uses dynamic programming (DP) at compile time
q  Costs can involve arbitrary computations
q  The matcher is hard coded

n  TWIG
q  Uses a table-driven tree pattern matcher based on Aho-Corasick string

pattern matcher
q  High overheads, could take O(n2) time, n being the number of nodes in the

subject tree
q  Uses DP at compile time
q  Costs can involve arbitrary computations

n  BURG
q  Uses BURS (bottom-up rewrite system) theory to move DP to compile-

compile time (matcher generation time)
q  Table-driven, more complex, but generates optimal code in O(n) time
q  Costs must be constants

Y.N. Srikant 15

Code Generation from DAGs

n  Optimal code generation from DAGs is NP-
Complete

n  DAGs are divided into trees and then
processed

n  We may replicate shared trees
q  Code size increases drastically

n  We may store result of a tree (root) into
memory and use it in all places where the
tree is used
q  May result in sub-optimal code

Y.N. Srikant 16

DAG example: Duplicate shared trees
1

2 3

4 6

7 8

10 11

5

9 8

10 11

5

9 8

10 11

1

2 3

4 5 6

8 9

10 11

7

Y.N. Srikant 17

DAG example: Compute shared trees
once and share results

1

2 3

4 5 6

8 9

10 11

7

1

2 3

4 5 6 5

7

5

8

8 9

8

10 11

1 2

3

After computing
tree 1, the
computation of
subtree 4-7-8
of tree 3 can be
done before or
after tree 2

Y.N. Srikant 18

Peephole Optimizations

n  Simple but effective local optimization
n  Usually carried out on machine code, but

intermediate code can also benefit from it
n  Examines a sliding window of code (peephole), and

replaces it by a shorter or faster sequence, if
possible

n  Each improvement provides opportunities for
additional improvements

n  Therefore, repeated passes over code are needed

Y.N. Srikant 19

Peephole Optimizations

n  Some well known peephole optimizations
q  eliminating redundant instructions
q  eliminating unreachable code
q  eliminating jumps over jumps
q  algebraic simplifications
q  strength reduction
q  use of machine idioms

Y.N. Srikant 20

Elimination of Redundant Loads and Stores

Y.N. Srikant 21

Eliminating Unreachable Code

n  An unlabeled instruction immediately
following an unconditional jump may be
removed
q  May be produced due to debugging code

introduced during development
q  Or due to updates to programs (changes for fixing

bugs) without considering the whole program
segment

Y.N. Srikant 22

Eliminating Unreachable Code

Y.N. Srikant 23

Flow-of-Control Optimizations

Y.N. Srikant 24

Reduction in Strength and Use of Machine
Idioms
n  x2 is cheaper to implement as x*x, than

as a call to an exponentiation routine
n  For integers, x*23 is cheaper to

implement as x << 3 (x left-shifted by 3
bits)

n  For integers, x/22 is cheaper to
implement as x >> 2 (x right-shifted by 2
bits)

Y.N. Srikant 25

Reduction in Strength and Use of Machine
Idioms
n  Floating point division by a constant can be

approximated as multiplication by a constant
n  Auto-increment and auto-decrement

addressing modes can be used wherever
possible
q  Subsume INCREMENT and DECREMENT

operations (respectively)
n  Multiply and add is a more complicated

pattern to detect

Implementing
Object-Oriented Languages

Y.N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 27

Outline of the Lecture

n  Language requirements
n  Mapping names to methods
n  Variable name visibility
n  Code generation for methods
n  Simple optimizations
n  Parts of this lecture are based on the book,
“Engineering a Compiler”, by Keith Cooper and
Linda Torczon, Morgan Kaufmann, 2004,
sections 6.3.3 and 7.10.

Y.N. Srikant 28

Language Requirements

n  Objects and Classes
n  Inheritance, subclasses and superclasses
n  Inheritance requires that a subclass have all

the instance variables specified by its
superclass
q  Necessary for superclass methods to work with

subclass objects
n  If A is B’s superclass, then some or all of A’s

methods/instance variables may be
redefined in B

Y.N. Srikant 29

Example of Class Hierarchy with
Complete Method Tables

n: 0
fee
fum

n: 1
fee
fum

n: 2
fee
fum

x: 5

x: 5
y: 3
z:

foe foe
fie

x: 2
y: 0
z:

y: 3

fum
...

fee
...

foe
...

fee
...

fee
...

fie
...

one
two

three
c

a
b

object
class

method

Y.N. Srikant 30

Mapping Names to Methods

n  Method invocations are not always static calls
n  a.fee() invokes one.fee(), a.foe() invokes two.foe(),

and a.fum() invokes three.fum()
n  Conceptually, method lookup behaves as if it

performs a search for each procedure call
q  These are called virtual calls
q  Search for the method in the receiver’s class; if it fails,

move up to the receiver’s superclass, and further
q  To make this search efficient, an implementation places a

complete method table in each class
q  Or, a pointer to the method table is included (virtual tbl ptr)

Y.N. Srikant 31

Mapping Names to Methods

n  If the class structure can be determined wholly at
compile time, then the method tables can be
statically built for each class

n  If classes can be created at run-time or loaded
dynamically (class definition can change too)
q  full lookup in the class hierarchy can be performed at run-

time or
q  use complete method tables as before, and include a

mechanism to update them when needed

Implementing
Object-Oriented Languages - 2

Y.N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 2

Outline of the Lecture

n  Language requirements (in part 1)
n  Mapping names to methods (in part 1)
n  Variable name visibility
n  Code generation for methods
n  Simple optimizations
n  Parts of this lecture are based on the book,
“Engineering a Compiler”, by Keith Cooper and
Linda Torczon, Morgan Kaufmann, 2004,
sections 6.3.3 and 7.10.

Y.N. Srikant 3

Example of Class Hierarchy with
Complete Method Tables

n: 0
fee
fum

n: 1
fee
fum

n: 2
fee
fum

x: 5

x: 5
y: 3
z:

foe foe
fie

x: 2
y: 0
z:

y: 3

fum
...

fee
...

foe
...

fee
...

fee
...

fie
...

one
two

three
c

a
b

object
class

method

Y.N. Srikant 4

Mapping Names to Methods

n  Method invocations are not always static calls
n  a.fee() invokes one.fee(), a.foe() invokes two.foe(),

and a.fum() invokes three.fum()
n  Conceptually, method lookup behaves as if it

performs a search for each procedure call
q  These are called virtual calls
q  Search for the method in the receiver’s class; if it fails,

move up to the receiver’s superclass, and further
q  To make this search efficient, an implementation places a

complete method table in each class
q  Or, a pointer to the method table is included (virtual tbl ptr)

Y.N. Srikant 5

Rules for Variable Name Visibility

n  Invoking b.fee() allows fee() to access all of
b’s instance variables (x,y,z), (since fee and
b are both declared by class one), and also
all class variables of classes one, two, and
three

n  However, invoking b.foe() allows foe() access
only to instance variables x and y of b (not z),
since foe() is declared by class two, and b by
class one
q  foe() can also access class variables of classes

two and three, but not class variables of class one

Y.N. Srikant 6

Code Generation for Methods

n  Methods can access any data member of any
object that becomes its receiver
q  receiver - every object that can find the method
q  subject to class hierarchy restrictions

n  Compiler must establish an offset for each
data member that applies uniformly to every
receiver

n  The compiler constructs these offsets as it
processes the declarations for a class
q  Objects contain no code, only data

Y.N. Srikant 7

Single Class, No Inheritance

Example:
Class giant {
 int fee() {...}
 int fie() {...}
 int foe() {...}
 int fum() {...}
static n;
int x,y;
}

%giant.new_

%giant.fee_

%giant.fie_

%giant.foe_

%giant.fum_

2

13

14

15

16

giant
class
record

joe
object
layout

fred
object
layout

x

y

y

x

0

4

8

12

16
20

method
pointer
offset

Y.N. Srikant 8

Implementing Single Inheritance

%new_

%fee_

%new_

%fee_

%new_

%fee_

%new_

x: 15
y: 16

%foe_ %fie_

2

x: 13
y: 14

...

giant mc

sc
class

joe

fred

%fum_

1

1

x: 5
jack

x: 5
y: 6

goose

class ptr
superclass ptr

methods
variables

class ptr

variables class object

{
z: 20

z: 30

Y.N. Srikant 9

Single Inheritance Object Layout

n  Now, an instance variable has the same offset in
every class where it exists up in its superclass

n  Method tables also follow a similar sequence as
above

n  When a class redefines a method defined in one of
its superclasses
q  the method pointer for that method implementation must

be stored at the same offset as the previous
implementation of that method in the superclasses

class
pointer

sc data
members

mc data
members

giant data
members

Y.N. Srikant 10

Single Inheritance Object Layout
(Complete Method Tables)

sc data
members

mc data
members

giant data
members

class
pointer

sc data
members (x)

mc data
members (y)

giant data
members (z)

Object layout for
joe/fred (giant)

class
pointer

sc data
members (x)

mc data
members (y)

Object layout
for goose (mc)

class
pointer

sc data
members (x)

Object layout
for jack (sc)

class
pointer

superclass
pointer

%new_
pointer

%fee_
pointer

%fum_
pointer 1 class record

for class sc

class
pointer

superclass
pointer

%new_
pointer

%fee_
pointer

%fum_
pointer 1 class record

for class mc

class
pointer

superclass
pointer

%new_
pointer

%fee_
pointer

%fum_
pointer 2 class record

for class giant

%foe_
pointer

%foe_
pointer

%fie_
pointer

Y.N. Srikant 11

Single Inheritance Object Layout (including
only changed and extra methods)

sc data
members

mc data
members

giant data
members

class
pointer

sc data
members (x)

mc data
members (y)

giant data
members (z)

Object layout for
joe/fred (giant)

class
pointer

sc data
members (x)

mc data
members (y)

Object layout
for goose (mc)

class
pointer

sc data
members (x)

Object layout
for jack (sc)

class
pointer

superclass
pointer

%new_
pointer

%fee_
pointer

%fum_
pointer 1 class record

for class sc

class
pointer

superclass
pointer

%new_
pointer

%fee_
pointer

%foe_
pointer 1 class record

for class mc

class
pointer

superclass
pointer

%new_
pointer

%fee_
pointer

%fie_
pointer 2 class record

for class giant

Y.N. Srikant 12

Fast Type Inclusion Tests – The need

n  If class Y is a subclass of class X
q  X a = new Y(); //a is of type base class of Y, okay
 // other code omitted
 Y b = a; // a holds a value of type Y
q  The above assignment is valid, but stmt 2 below is not
q  1. X a = new X();
 // other code omitted
 2. Y b = a; // a holds a value of type X

n  Runtime type checking to verify the above is
needed

n  Java has an explicit instanceof test that requires a
runtime type checking

Y.N. Srikant 13

Fast Type Inclusion Tests – Searching the
Class Hierarchy Graph
n  Store the class hierarchy graph in memory
n  Search and check if one node is an ancestor

of another
n  Traversal is straight forward to implement

only for single inheritance
n  Cumbersome and slow for multiple

inheritance
n  Execution time increases with depth of class

hierarchy

Y.N. Srikant 14

Class Hierarchy Graph - Example

A

B C

D E

G

F

Single
inheritance A

B C

D E

G

F

H Multiple
inheritance

Y.N. Srikant 15

Fast Type Inclusion Tests – Binary Matrix

0 1 0 0 1

0 0 1 0 1

1 0 0 1 0

1 0 0 0 1

0 0 1 0 0

 C1 C2 C3 C4 C5

C1

C2

C3

C4

C5

Class types

Class types

BM [Ci , Cj] = 1, iff Ci is a subclass of Cj

Tests are
efficient, but
Matrix will be
large in practice.
The matrix can
be compacted,
but this
increases
access time.
This can handle
multiple
inheritance also.

Y.N. Srikant 16

Relative (Schubert’s) Numbering

A

B C

D E

G

F

{3,3}

{1,1}
{5,5}

{3,4}

{3,6} {1,2}

{1,7}

{ la, ra } for a node a :
ra is the ordinal number of the
node a in a postorder traversal of
the tree. Let ◄ denote “subtype
of” relation. All descendants of a
node are subtypes of that node.
◄ is reflexive and transitive.
la = min { rp | p is a descendant of
a }.
Now, a ◄ b, iff lb < ra < rb.

This test is very fast and is O(1).
Works only for single inheritance.
Extensions to handle multiple
inheritance are complex.

Y.N. Srikant 17

Devirtualization – Class Hierarchy Analysis

n  Reduces the overhead of virtual method
invocation

n  Statically determines which virtual method
calls resolve to a single method

n  Such calls are either inlined or replaced by
static calls

n  Builds a class hierarchy and a call graph

Y.N. Srikant 18

Class Hierarchy Analysis
class X extends object {
 void f1() {. . .}
 void f2() {. . .}
}
class Y extends X {
 void f1() {. . .}
}
class Z extends X {
 void f1() {. . .}
 public static void main(...) {
 X a = new X(); Y b = new Y();
 Z c = new Z();
 if (...) a = c;
 // other code
 a.f1(); b.f1(); b.f2();
 }
}

object

X
f1(), f2()

Y
f1()

Z
f1()

Z.main()
a.f1() b.f1() b.f2()

X.f1 Y.f1 Z.f1 X.f2

Global Register Allocation - 1

Y N Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 20

Outline

n  Issues in Global Register Allocation
n  The Problem
n  Register Allocation based on Usage Counts
n  Linear Scan Register allocation
n  Chaitin’s graph colouring based algorithm

Y.N. Srikant 21

Some Issues in Register Allocation

n  Which values in a program reside in registers?
(register allocation)

n  In which register? (register assignment)
q  The two together are usually loosely referred to as register

allocation
n  What is the unit at the level of which register

allocation is done?
q  Typical units are basic blocks, functions and regions.
q  RA within basic blocks is called local RA
q  The other two are known as global RA
q  Global RA requires much more time than local RA

Y.N. Srikant 22

Some Issues in Register Allocation

n  Phase ordering between register allocation and
instruction scheduling
q  Performing RA first restricts movement of code during

scheduling – not recommended
q  Scheduling instructions first cannot handle spill code

introduced during RA
n  Requires another pass of scheduling

n  Tradeoff between speed and quality of allocation
q  In some cases, e.g., in Just-In-Time compilation, cannot

afford to spend too much time in register allocation
q  Only local or both local and global allocation?

Y.N. Srikant 23

The Problem

n  Global Register Allocation assumes that allocation is
done beyond basic blocks and usually at function level

n  Decision problem related to register allocation :
q  Given an intermediate language program represented as a

control flow graph and a number k, is there an assignment
of registers to program variables such that no conflicting
variables are assigned the same register, no extra loads or
stores are introduced, and at most k registers are used?

n  This problem has been shown to be NP-hard (Sethi
1970).

n  Graph colouring is the most popular heuristic used.
n  However, there are simpler algorithms as well

Global Register Allocation - 2

Y N Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 2

Outline

n  Issues in Global Register Allocation
 (in part 1)
n  The Problem (in part 1)
n  Register Allocation based in Usage Counts
n  Linear Scan Register allocation
n  Chaitin’s graph colouring based algorithm

Y.N. Srikant 3

The Problem

n  Global Register Allocation assumes that allocation is
done beyond basic blocks and usually at function level

n  Decision problem related to register allocation :
q  Given an intermediate language program represented as a

control flow graph and a number k, is there an assignment
of registers to program variables such that no conflicting
variables are assigned the same register, no extra loads or
stores are introduced, and at most k registers are used.

n  This problem has been shown to be NP-hard (Sethi
1970).

n  Graph colouring is the most popular heuristic used.
n  However, there are simpler algorithms as well

Y.N. Srikant 4

Conflicting variables

n  Two variables interfere or conflict if their live
ranges intersect
q  A variable is live at a point p in the flow graph, if

there is a use of that variable in the path from p to
the end of the flow graph

q  The live range of a variable is the smallest set of
program points at which it is live.

q  Typically, instruction no. in the basic block along
with the basic block no. is the representation for a
point.

Y.N. Srikant 5

Example

 If (cond) A not live
 then A =
 else B =
X: if (cond) B not live
 then = A
 else = B

 A and B both live

If (cond)

A= B=

If (cond)

=A =B

T F

F

B1

B2 B3

B4

B6
B5

Live range of A: B2, B4 B5
Live range of B: B3, B4, B6

Y.N. Srikant 6

Global Register Allocation via
Usage Counts (for Single Loops)
n  Allocate registers for variables used within loops
n  Requires information about liveness of variables

at the entry and exit of each basic block (BB) of
a loop

n  Once a variable is computed into a register, it
stays in that register until the end of of the BB
(subject to existence of next-uses)

n  Load/Store instructions cost 2 units (because
they occupy two words)

Y.N. Srikant 7

Global Register Allocation via
Usage Counts (for Single Loops)
1.  For every usage of a variable v in a BB,

until it is first defined, do:
Ø  savings(v) = savings(v) + 1
Ø  after v is defined, it stays in the register any way,

and all further references are to that register
2.  For every variable v computed in a BB, if it

is live on exit from the BB,
Ø  count a savings of 2, since it is not necessary to

store it at the end of the BB

Y.N. Srikant 8

Global Register Allocation via
Usage Counts (for Single Loops)
n  Total savings per variable v are

q  liveandcomputed(v,B) in the second term is 1 or 0
n  On entry to (exit from) the loop, we load (store) a

variable live on entry (exit), and lose 2 units for each
q  But, these are “one time” costs and are neglected

n  Variables, whose savings are the highest will reside
in registers

((,) 2* (,))
B Loop

savings v B liveandcomputed v B
∈

+∑

Y.N. Srikant 9

Global Register Allocation via
Usage Counts (for Single Loops)

Savings for the variables
 B1 B2 B3 B4
a: (0+2)+(1+0)+(1+0)+(0+0) = 4
b: (3+0)+(0+0)+(0+0)+(0+2) = 5
c: (1+0)+(1+0)+(0+0)+(1+0) = 3
d: (0+2)+(1+0)+(0+0)+(1+0) = 4
e: (0+2)+(0+0)+(1+0)+(0+0) = 3
f: (1+0)+(1+0)+(0+2)+(0+0) = 4

If there are 3 registers, they will
be allocated to the variables, a, b,
and d

a = b*c
d = b-a
e = b/f

b = a-f
e = d+c f = e * a

b = c - d

bcf

B1

B2

B3

B4

acde acdf

cdf

bcf abcdef

aef

Y.N. Srikant 10

Global Register Allocation via
Usage Counts (for Nested Loops)
n  We first assign registers for inner loops and then

consider outer loops. Let L1 nest L2
n  For variables assigned registers in L2, but not in L1

q  load these variables on entry to L2 and store them on exit
from L2

n  For variables assigned registers in L1, but not in L2
q  store these variables on entry to L2 and load them on exit

from L2
n  All costs are calculated keeping the above rules

Y.N. Srikant 11

Global Register Allocation via
Usage Counts (for Nested Loops)

n  case 1: variables x,y,z
assigned registers in L2, but
not in L1
q  Load x,y,z on entry to L2
q  Store x,y,z on exit from L2

n  case 2: variables a,b,c
assigned registers in L1, but
not in L2
q  Store a,b,c on entry to L2
q  Load a,b,c on exit from L2

n  case 3: variables p,q assigned
registers in both L1 and L2
q  No special action

Body
of L2

L2 L1

Y.N. Srikant 12

A Fast Register Allocation Scheme

n  Linear scan register allocation(Poletto and
Sarkar 1999) uses the notion of a live interval
rather than a live range.

n  Is relevant for applications where compile
time is important, such as in dynamic
compilation and in just-in-time compilers.

n  Other register allocation schemes based on
graph colouring are slow and are not suitable
for JIT and dynamic compilers

Y.N. Srikant 13

Linear Scan Register Allocation

n  Assume that there is some numbering of the
instructions in the intermediate form

n  An interval [i,j] is a live interval for variable v
if there is no instruction with number j’> j
such that v is live at j’ and no instruction with
number i’< i such that v is live at i

n  This is a conservative approximation of live
ranges: there may be subranges of [i,j] in
which v is not live but these are ignored

Y.N. Srikant 14

Live Interval Example

 ...
i’:
 ...
i:
 ...
j:
 ...
j’:
 ...

sequentially
numbered
instructions } i – j : live interval for variable v

i’ does not exist

j’ does not exist

v live

v live

v live

Y.N. Srikant 15

Example

 If (cond)
 then A=
 else B=
X: if (cond)
 then =A
 else = B

If (cond)

A= B=

If (cond)

=A =B

T F

F

LIVE INTERVAL FOR A

A NOT LIVE HERE

Y.N. Srikant 16

Live Intervals

n  Given an order for pseudo-instructions and
live variable information, live intervals can be
computed easily with one pass through the
intermediate representation.

n  Interference among live intervals is assumed
if they overlap.

n  Number of overlapping intervals changes
only at start and end points of an interval.

Y.N. Srikant 17

The Data Structures

n  Live intervals are stored in the sorted order of
increasing start point.

n  At each point of the program, the algorithm
maintains a list (active list) of live intervals
that overlap the current point and that have
been placed in registers.

n  active list is kept in the sorted order of
increasing end point.

Y.N. Srikant 18

i1 i2 i3 i4

i5 i6 i7

i8 i9 i10 i11
A B

Active lists (in order
of increasing end pt)

Active(A)= {i1}
Active(B)={i1,i5}
Active(C)={i8,i5}
Active(D)= {i7,i4,i11}

C

Example

Three registers are enough for computation without spills

D

Sorted order of intervals
(according to start point):
i1, i5, i8, i2, i9, i6, i3, i10, i7, i4, i11

Y.N. Srikant 19

The Algorithm (1)

{ active := [];
 for each live interval i, in order of increasing
 start point do
 { ExpireOldIntervals (i);
 if length(active) == R then SpillAtInterval(i);
 else { register[i] := a register removed from the
 pool of free registers;
 add i to active, sorted by increasing end point
 }
 }
}

Y.N. Srikant 20

The Algorithm (2)

ExpireOldIntervals (i)
{ for each interval j in active, in order of
 increasing end point do
 { if endpoint[j] > startpoint[i] then continue
 else { remove j from active;
 add register[j] to pool of free registers;
 }
 }
}

Y.N. Srikant 21

The Algorithm (3)

SpillAtInterval (i)
{ spill := last interval in active; /* last ending interval */
 if endpoint [spill] > endpoint [i] then
 { register [i] := register [spill];
 location [spill] := new stack location;
 remove spill from active;
 add i to active, sorted by increasing end point;
 } else location [i] := new stack location;
}

Y.N. Srikant 22

i1 i2 i3 i4

i5 i6 i7

i8 i9 i10 i11
A B

Active lists (in order
of increasing end pt)

Active(A)= {i1}
Active(B)={i1,i5}
Active(C)={i8,i5}
Active(D)= {i7,i4,i11}

C

Three registers are enough for computation without spills

D

Sorted order of intervals
(according to start point):
i1, i5, i8, i2, i9, i6, i3, i10, i7, i4, i11

Example 1

Y.N. Srikant 23

Example 2
A

B

C

D

E

1 2 3 4 5

1,2 : give A,B register
3: Spill C since endpoint[C] > endpoint [B]

4: A expires, give D register
5: B expires, E gets register

2 registers
available

Y.N. Srikant 24

Example 3
A

B

C

D

E

1 2 3 4 5

1,2 : give A,B register
3: Spill B since endpoint[B] > endpoint [C]
 give register to C

4: A expires, give D register
5: C expires, E gets register

2 registers
available

Y.N. Srikant 25

Complexity of the Linear Scan
Algorithm
n  If V is the number of live intervals and R the number of

available physical registers, then if a balanced binary
tree is used for storing the active intervals, complexity is
O(V log R).
q  Active list can be at most ‘R’ long
q  Insertion and deletion are the important operations

n  Empirical results reported in literature indicate that linear
scan is significantly faster than graph colouring
algorithms and code emitted is at most 10% slower than
that generated by an aggressive graph colouring
algorithm.

Y.N. Srikant 26

Chaitin’s Formulation of the
Register Allocation Problem
n  A graph colouring formulation on the

interference graph
n  Nodes in the graph represent either live ranges

of variables or entities called webs
n  An edge connects two live ranges that interfere

or conflict with one another
n  Usually both adjacency matrix and adjacency

lists are used to represent the graph.

Y.N. Srikant 27

Chaitin’s Formulation of the
Register Allocation Problem

n  Assign colours to the nodes such that two
nodes connected by an edge are not assigned
the same colour
q  The number of colours available is the number

of registers available on the machine
q  A k-colouring of the interference graph is

mapped onto an allocation with k registers

Y.N. Srikant 28

Example

n  Two colourable Three colourable

Y.N. Srikant 29

Idea behind Chaitin’s Algorithm

n  Choose an arbitrary node of degree less than k and
put it on the stack

n  Remove that vertex and all its edges from the graph
q  This may decrease the degree of some other nodes and

cause some more nodes to have degree less than k
n  At some point, if all vertices have degree greater

than or equal to k, some node has to be spilled
n  If no vertex needs to be spilled, successively pop

vertices off stack and colour them in a colour not
used by neighbours (reuse colours as far as
possible)

Global Register Allocation - 3

Y N Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant 2

Outline

n  Issues in Global Register Allocation
 (in part 1)
n  The Problem (in part 1)
n  Register Allocation based in Usage Counts
 (in part 2)
n  Linear Scan Register allocation (in part 2)
n  Chaitin’s graph colouring based algorithm

Y.N. Srikant 3

Chaitin’s Formulation of the
Register Allocation Problem
n  A graph colouring formulation on the

interference graph
n  Nodes in the graph represent either live ranges

of variables or entities called webs
n  An edge connects two live ranges that interfere

or conflict with one another
n  Usually both adjacency matrix and adjacency

lists are used to represent the graph.

Y.N. Srikant 4

Chaitin’s Formulation of the
Register Allocation Problem

n  Assign colours to the nodes such that two
nodes connected by an edge are not assigned
the same colour
q  The number of colours available is the number

of registers available on the machine
q  A k-colouring of the interference graph is

mapped onto an allocation with k registers

Y.N. Srikant 5

Example

n  Two colourable Three colourable

Y.N. Srikant 6

Idea behind Chaitin’s Algorithm

n  Choose an arbitrary node of degree less than k and
put it on the stack

n  Remove that vertex and all its edges from the graph
q  This may decrease the degree of some other nodes and

cause some more nodes to have degree less than k
n  At some point, if all vertices have degree greater

than or equal to k, some node has to be spilled
n  If no vertex needs to be spilled, successively pop

vertices off stack and colour them in a colour not
used by neighbours (reuse colours as far as
possible)

Y.N. Srikant 7

Simple example – Given Graph

2

3

4 5 1

STACK

3 REGISTERS

Y.N. Srikant 8

Simple Example – Delete Node 1

STACK
3 REGISTERS

2

3

4 5 1

2

 1

Y.N. Srikant 9

Simple Example – Delete Node 2

STACK
3 REGISTERS

2

3

4 5 1

 1
 2

Y.N. Srikant 10

Simple Example – Delete Node 4

STACK

3 REGISTERS

2

3

4 5 1

 1
 2
 4

Y.N. Srikant 11

Simple Example – Delete Nodes 3

STACK
3 REGISTERS

2

3

4 5 1

 1
 2
 4
 3

Y.N. Srikant 12

Simple Example – Delete Nodes 5

STACK
3 REGISTERS

2

3

4 5 1

 1
 2
 4
 3
 5

Y.N. Srikant 13

Simple Example – Colour Node 5

STACK

COLOURS

5

3 REGISTERS

 1
 2
 4
 3

Y.N. Srikant 14

Simple Example – Colour Node 3

STACK

COLOURS

5

3

3 REGISTERS

 1
 2
 4

Y.N. Srikant 15

Simple Example – Colour Node 4

STACK

COLOURS

5

3

4

3 REGISTERS

 1
 2

Y.N. Srikant 16

Simple Example – Colour Node 2

STACK

COLOURS

5

3

4

2

3 REGISTERS

 1

Y.N. Srikant 17

Simple Example – Colour Node 1

STACK

COLOURS

5

3

2

1 4

3 REGISTERS

Y.N. Srikant 18

Steps in Chaitin’s Algorithm

n  Identify units for allocation
q  Renames variables/symbolic registers in the IR such

that each live range has a unique name (number)
q  A live range is entitled to get a register

n  Build the interference graph
n  Coalesce by removing unnecessary move or

copy instructions
n  Colour the graph, thereby selecting registers
n  Compute spill costs, simplify and add spill code

till graph is colourable

Y.N. Srikant 19

Chaitin’s Framework

RENAME BUILD IG COALESCE SIMPLIFY COMPUTE
SPILL COST

INSERT
SPILL CODE

SELECT
REGISTERS

Example of Renaming

Y.N. Srikant 20

a = a =

= a

a =

= a = a

s1 = s1 =

= s1

s2 =

= s2 = s2

Renaming

Y.N. Srikant 21

An Example

Original code

1. x= 2
2. y = 4
3. w = x+ y
4. z = x+1
5. u = x*y
6. x= z*2

Code with symbolic registers

1.  s1=2; (lv of s1: 1-5)
2.  s2=4; (lv of s2: 2-5)
3.  s3=s1+s2; (lv of s3: 3-4)
4.  s4=s1+1; (lv of s4: 4-6)
5.  s5=s1*s2; (lv of s5: 5-6)
6.  s6=s4*2; (lv of s6: 6- ...)

Y.N. Srikant 22

s5
s1 s3 r3

s6 s2 s4
r1 r2

INTERFERENCE GRAPH
HERE ASSUME VARIABLE Z (s4) CANNOT OCCUPY r1

Y.N. Srikant 23

Example(continued)

Final register allocated code

r1 = 2
r2= 4
r3= r1+r2
r3= r1+1
r1= r1 *r2
r2= r3+r2

Three registers are
sufficient for no spills

Y.N. Srikant 24

More Complex Example

Def y

Use x

Def x

Def y

Use x

Use y
Use x
Def x

Def x
Use y

B2
B1

B3

B4 B5

B6

W1: def x in B2, def x in B3, use x in
B4, Use x in B5
W2: def x in B5, use x in B6
W3: def y in B2, use y in B4
W4: def y in B1, use y in B3

w3 w1

w2 w4

Y.N. Srikant 25

Build Interference Graph

n  Create a node for each LV and for each
physical register in the interference graph

n  If two distinct LVs interfere, that is, a variable
associated with one LV is live at a definition
point of another add an edge between the
two LVs

n  If a particular variable cannot reside in a
register, add an edge between all LVs
associated with that variable and the register

Y.N. Srikant 26

Copy Subsumption or Coalescing

n  Consider a copy instruction: b := e in the program
n  If the live ranges of b and e do not overlap, then b

and e can be given the same register (colour)
q  Implied by lack of any edges between b and e in the

interference graph
n  The copy instruction can then be removed from the

final program
n  Coalesce by merging b and e into one node that

contains the edges of both nodes

Y.N. Srikant 27

Example of coalescing

c

b

d

e

a

f

c

be

d

a

f

BEFORE AFTER

Copy inst: b:=e

Y.N. Srikant 28

Copy Subsumption or Coalescing

b = e b = e

l.r of
old b

l.r of
new b

l.r of e

l.r of
old b

l.r of
new b

l.r of e

copy subsumption
is not possible; lr(e)
and lr(new b) interfere

copy subsumption is
possible; lr(e) and lr(new b)
do not interfere

Y.N. Srikant 29

Copy Subsumption Repeatedly

b = e

l.r of x

l.r of b

l.r of e

copy subsumption happens
twice - once between b and e,
and second time between
a and b. e, b, and a are all
given the same register. a = b

l.r of a

Y.N. Srikant 30

Coalescing

n  Coalesce all possible copy instructions

q  Rebuild the graph
n  may offer further opportunities for coalescing
n  build-coalesce phase is repeated till no further

coalescing is possible.
n  Coalescing reduces the size of the

graph and possibly reduces spilling

Y.N. Srikant 31

Simple fact

n  Suppose the no. of registers available is R.
n  If a graph G contains a node n with fewer

than R neighbors then removing n and its
edges from G will not affect its R-colourability

n  If G’ = G-{n} can be coloured with R colours,
then so can G.
q  After colouring G’, just assign to n, a colour

different from its R-1 neighbours.

Y.N. Srikant 32

Simplification

n  If a node n in the interference graph has
degree less than R, remove n and all its
edges from the graph and place n on a
colouring stack.

n  When no more such nodes are removable
then we need to spill a node.

n  Spilling a variable x implies
q  loading x into a register at every use of x
q  storing x from register into memory at every

definition of x

Y.N. Srikant 33

Spilling Cost

n  The node to be spilled is decided on the basis of a
spill cost for the live range represented by the node.

n  Chaitin’s estimate of spill cost of a live range v

q  cost(v) =

q  where c is the cost of the op and d, the loop nesting depth.
q  10 in the eqn above approximates the no. of iterations of

any loop
q  The node to be spilled is the one with MIN(cost(v)/deg(v))

all load or store
operations in
a live range v

*10dc∑

Y.N. Srikant 34

Here R = 3 and the graph is 3-colourable
No spilling is necessary

Example

Y.N. Srikant 35

1 2

3

4
5

A 3-colourable graph which is not
3-coloured by colouring heuristic

Example

Y.N. Srikant 36

Spilling a Node
n  To spill a node we remove it from the graph and

represent the effect of spilling as follows (It cannot
be simply removed from the graph).
q  Reload the spilled object at each use and store it in

memory at each definition point
q  This creates new small live ranges which will also need

registers.
n  After all spill decisions are made, insert spill code,

rebuild the interference graph and then repeat the
attempt to colour.

n  When simplification yields an empty graph then
select colours, that is, registers

Y.N. Srikant 37

Effect of Spilling

Def y

Use x

Def x

Def y

Use x

Use y
Use x
Def x

Def x
Use y

B2
B1

B3

B4 B5

B6

W1: def x in B2, def x in B3, use x in
B4, Use x in B5
W2: def x in B5, use x in B6
W3: def y in B2, use y in B4
W4: def y in B1, use y in B3

w3 w1

w2 w4

x is spilled in
LV W1

Y.N. Srikant 38

Effect of Spilling

Def x
store x
Def y

load x
Use x
Use y

load x
Use x
Def x

Def x
store x
Use y

Use x

Def y

B2

B4 B5

B6

B1

B3

w4

w6

w5

w1 w2

w3

w7

Interference Graph

W2

W3

W4

W5

W6 W7

W1

Y.N. Srikant 39

Colouring the Graph(selection)

Repeat
v= pop(stack).
Colours_used(v) = colours used by neighbours of v.
Colours_free(v) = all colours - Colours_used(v).
Colour (v) = choose any colour in Colours_free(v).
Until stack is empty

n  Convert the colour assigned to a symbolic register to

the corresponding real register’s name in the code.

Y.N. Srikant 40

A Complete Example

1. t1 = 202
2. i = 1
3. L1: t2 = i>100
4. if t2 goto L2
5. t1 = t1-2
6. t3 = addr(a)
7. t4 = t3 - 4
8. t5 = 4*i
9. t6 = t4 + t5
10. *t6 = t1
11. i = i+1
12. goto L1
13. L2:

variable live range
t1 1-10
i 2-11

t2 3-4
t3 6-7
t4 7-9
t5 8-9
t6 9-10

Y.N. Srikant 41

A Complete Example

variable live range
t1 1-10
i 2-11

t2 3-4
t3 6-7
t4 7-9
t5 8-9
t6 9-10

t1 i

t2 t3

t4

t5 t6

Y.N. Srikant 42

A Complete Example

t1 i

t2 t3

t4

t5 t6
Assume 3 registers. Nodes t6,t2,
and t3 are first pushed onto a
stack during reduction.

t1 i

t4

t5

This graph cannot be reduced
further. Spilling is necessary.

Y.N. Srikant 43

A Complete Example

t1 i

t4

t5

Node V Cost(v) deg(v) h0(v)
t1 31 3 10
i 41 3 14

t4 20 3 7
t5 20 3 7

t1: 1+(1+1+1)*10 = 31
i : 1+(1+1+1+1)*10 = 41
t4: (1+1)*10 = 20
t5: (1+1)*10 = 20
t5 will be spilled. Then the
graph can be coloured.

1. t1 = 202
2. i = 1
3. L1: t2 = i>100
4. if t2 goto L2
5. t1 = t1-2
6. t3 = addr(a)
7. t4 = t3 - 4
8. t5 = 4*i
9. t6 = t4 + t5
10. *t6 = t1
11. i = i+1
12. goto L1
13. L2:

Y.N. Srikant 44

A Complete Example

t1 i

t4

i
t1
t4
t3
t2
t6

t1 i

t2 t3

t4

t5 t6

spilled

R1

R3

R3

R3

R3

R2

1. R1 = 202
2. R2 = 1
3. L1: R3 = i>100
4. if R3 goto L2
5. R1 = R1 - 2
6. R3 = addr(a)
7. R3 = R3 - 4
8. t5 = 4*R2
9. R3 = R3 + t5
10. *R3 = R1
11. R2 = R2+1
12. goto L1
13. L2:

t5: spilled node, will be provided with a temporary register during code generation

Y.N. Srikant 45

Drawbacks of the Algorithm

n  Constructing and modifying interference
graphs is very costly as interference graphs
are typically huge.

n  For example, the combined interference
graphs of procedures and functions of gcc in
mid-90’s have approximately 4.6 million
edges.

Y.N. Srikant 46

Some modifications

n  Careful coalescing: Do not coalesce if
coalescing increases the degree of a node to
more than the number of registers

n  Optimistic colouring: When a node needs to
be spilled, push it onto the colouring stack
instead of spilling it right away
q  spill it only when it is popped and if there is no

colour available for it
q  this could result in colouring graphs that need

spills using Chaitin’s technique.

Y.N. Srikant 47

1 2

3

4
5

A 3-colourable graph which is not
3-coloured by colouring heuristic,
but coloured by optimistic colouring Example

Say, 1 is chosen for spilling.
Push it onto the stack, and
remove it from the graph. The
remaining graph (2,3,4,5) is
3-colourable. Now, when 1 is
popped from the colouring
stack, there is a colour with
which 1 can be coloured. It
need not be spilled.

Introduction to
Machine-Independent Optimizations - 1

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Introduction to Optimizations

Outline of the Lecture

What is code optimization?
Illustrations of code optimizations
Examples of data-flow analysis
Fundamentals of control-flow analysis
Algorithms for two machine-independent optimizations
SSA form and optimizations

Y.N. Srikant Introduction to Optimizations

Machine-independent Code Optimization

Intermediate code generation process introduces many
inefficiencies

Extra copies of variables, using variables instead of
constants, repeated evaluation of expressions, etc.

Code optimization removes such inefficiencies and
improves code
Improvement may be time, space, or power consumption
It changes the structure of programs, sometimes of beyond
recognition

Inlines functions, unrolls loops, eliminates some
programmer-defined variables, etc.

Code optimization consists of a bunch of heuristics and
percentage of improvement depends on programs (may be
zero also)

Y.N. Srikant Introduction to Optimizations

Examples of Machine-Independant Optimizations

Global common sub-expression elimination
Copy propagation
Constant propagation and constant folding
Loop invariant code motion
Induction variable elimination and strength reduction
Partial redundancy elimination
Loop unrolling
Function inlining
Tail recursion removal
Vectorization and Concurrentization
Loop interchange, and loop blocking

Y.N. Srikant Introduction to Optimizations

Bubble Sort Running Example

Y.N. Srikant Introduction to Optimizations

Control Flow Graph of Bubble Sort

Y.N. Srikant Introduction to Optimizations

GCSE Conceptual Example

Y.N. Srikant Introduction to Optimizations

GCSE on Running Example - 1

Y.N. Srikant Introduction to Optimizations

GCSE on Running Example - 2

Y.N. Srikant Introduction to Optimizations

Copy Propagation on Running Example

Y.N. Srikant Introduction to Optimizations

GCSE and Copy Propagation on Running Example

Y.N. Srikant Introduction to Optimizations

Constant Propagation and Folding Example

Y.N. Srikant Introduction to Optimizations

Loop Invariant Code motion Example

Y.N. Srikant Introduction to Optimizations

Strength Reduction

Y.N. Srikant Introduction to Optimizations

Induction Variable Elimination

Y.N. Srikant Introduction to Optimizations

Partial Redundancy Elimination

Y.N. Srikant Introduction to Optimizations

Unrolling a For-loop

Y.N. Srikant Introduction to Optimizations

Unrolling While and Repeat loops

Y.N. Srikant Introduction to Optimizations

Function Inlining

Y.N. Srikant Introduction to Optimizations

Tail Recursion Removal

Y.N. Srikant Introduction to Optimizations

Vectorization and Concurrentization Example 1

for I = 1 to 100 do {
X(I) = X(I) + Y(I)

}

can be converted to

X(1:100) = X(1:100) + Y(1:100)

or

forall I = 1 to 100 do X(I) = X(I) + Y(I)

Y.N. Srikant Introduction to Optimizations

Vectorization Example 2

for I = 1 to 100 do {
X(I+1) = X(I) + Y(I)

}

cannot be converted to

X(2:101) = X(1:100) + Y(1:100)
or equivalent concurrent code

because of dependence as shown below

X(2) = X(1) + Y(1)
X(3) = X(2) + Y(2)
X(4) = X(3) + Y(3)
...

Y.N. Srikant Introduction to Optimizations

Loop Interchange for parallelizability

Y.N. Srikant Introduction to Optimizations

Loop Blocking

Y.N. Srikant Introduction to Optimizations

Fundamentals of Data-flow Analysis

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Data-flow Analysis

Data-flow analysis

These are techniques that derive information about the
flow of data along program execution paths
An execution path (or path) from point p1 to point pn is a
sequence of points p1,p2, ...,pn such that for each
i = 1,2, ...,n − 1, either

1 pi is the point immediately preceding a statement and pi+1
is the point immediately following that same statement, or

2 pi is the end of some block and pi+1 is the beginning of a
successor block

In general, there is an infinite number of paths through a
program and there is no bound on the length of a path
Program analyses summarize all possible program states
that can occur at a point in the program with a finite set of
facts
No analysis is necessarily a perfect representation of the
state

Y.N. Srikant Data-flow Analysis

Uses of Data-flow Analysis

Program debugging
Which are the definitions (of variables) that may reach a
program point? These are the reaching definitions

Program optimizations
Constant folding
Copy propagation
Common sub-expression elimination etc.

Y.N. Srikant Data-flow Analysis

Data-Flow Analysis Schema

A data-flow value for a program point represents an
abstraction of the set of all possible program states that
can be observed for that point
The set of all possible data-flow values is the domain for
the application under consideration

Example: for the reaching definitions problem, the domain
of data-flow values is the set of all subsets of of definitions
in the program
A particular data-flow value is a set of definitions

IN[s] and OUT [s]: data-flow values before and after each
statement s
The data-flow problem is to find a solution to a set of
constraints on IN[s] and OUT [s], for all statements s

Y.N. Srikant Data-flow Analysis

Introduction to
Machine-Independent Optimizations - 2

Data-Flow Analysis

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Data-Flow Analysis

Outline of the Lecture

What is code optimization? (in part 1)
Illustrations of code optimizations (in part 1)
Examples of data-flow analysis
Fundamentals of control-flow analysis
Algorithms for two machine-independent optimizations
SSA form and optimizations

Y.N. Srikant Data-Flow Analysis

Data-Flow Analysis Schema

A data-flow value for a program point represents an
abstraction of the set of all possible program states that
can be observed for that point
The set of all possible data-flow values is the domain for
the application under consideration

Example: for the reaching definitions problem, the domain
of data-flow values is the set of all subsets of of definitions
in the program
A particular data-flow value is a set of definitions

IN[s] and OUT [s]: data-flow values before and after each
statement s
The data-flow problem is to find a solution to a set of
constraints on IN[s] and OUT [s], for all statements s

Y.N. Srikant Data-Flow Analysis

Data-Flow Analysis Schema (2)

Two kinds of constraints
Those based on the semantics of statements (transfer
functions)
Those based on flow of control

A DFA schema consists of
A control-flow graph
A direction of data-flow (forward or backward)
A set of data-flow values
A confluence operator (usually set union or intersection)
Transfer functions for each block

We always compute safe estimates of data-flow values
A decision or estimate is safe or conservative, if it never
leads to a change in what the program computes (after the
change)
These safe values may be either subsets or supersets of
actual values, based on the application

Y.N. Srikant Data-Flow Analysis

The Reaching Definitions Problem

We kill a definition of a variable a, if between two points
along the path, there is an assignment to a
A definition d reaches a point p, if there is a path from the
point immediately following d to p, such that d is not killed
along that path
Unambiguous and ambiguous definitions of a variable

a := b+c
(unambiguous definition of ’a’)

...
*p := d

(ambiguous definition of ’a’, if ’p’ may point to variables
other than ’a’ as well; hence does not kill the above
definition of ’a’)

...
a := k-m

(unambiguous definition of ’a’; kills the above definition of
’a’)

Y.N. Srikant Data-Flow Analysis

The Reaching Definitions Problem(2)

We compute supersets of definitions as safe values
It is safe to assume that a definition reaches a point, even
if it does not.
In the following example, we assume that both a=2 and
a=4 reach the point after the complete if-then-else
statement, even though the statement a=4 is not reached
by control flow
if (a==b) a=2; else if (a==b) a=4;

Y.N. Srikant Data-Flow Analysis

The Reaching Definitions Problem (3)

The data-flow equations (constraints)

IN[B] =
⋃

P is a predecessor of B

OUT [P]

OUT [B] = GEN[B]
⋃

(IN[B]− KILL[B])

IN[B] = φ, for all B (initialization only)

If some definitions reach B1 (entry), then IN[B1] is
initialized to that set
Forward flow DFA problem (since OUT [B] is expressed in
terms of IN[B]), confluence operator is ∪

Direction of flow does not imply traversing the basic blocks
in a particular order
The final result does not depend on the order of traversal of
the basic blocks

Y.N. Srikant Data-Flow Analysis

The Reaching Definitions Problem (4)

GEN[B] = set of all definitions inside B that are “visible”
immediately after the block - downwards exposed
definitions

If a variable x has two or more defintions in a basic block,
then only the last definition of x is downwards exposed; all
others are not visible outside the block

KILL[B] = union of the definitions in all the basic blocks of
the flow graph, that are killed by individual statements in B

If a variable x has a definition di in a basic block, then di
kills all the definitions of the variable x in the program,
except di

Y.N. Srikant Data-Flow Analysis

Reaching Definitions Analysis: GEN and KILL

Y.N. Srikant Data-Flow Analysis

Reaching Definitions Analysis: DF Equations

Y.N. Srikant Data-Flow Analysis

Reaching Definitions Analysis: An Example - Pass 1

Y.N. Srikant Data-Flow Analysis

Reaching Definitions Analysis: An Example - Pass 2.1

Y.N. Srikant Data-Flow Analysis

Reaching Definitions Analysis: An Example - Pass 2.2

Y.N. Srikant Data-Flow Analysis

Reaching Definitions Analysis: An Example - Pass 2.3

Y.N. Srikant Data-Flow Analysis

Reaching Definitions Analysis: An Example - Pass 2.4

Y.N. Srikant Data-Flow Analysis

Reaching Definitions Analysis: An Example - Final

Y.N. Srikant Data-Flow Analysis

An Iterative Algorithm for Computing Reaching Def.

for each block B do { IN[B] = φ; OUT [B] = GEN[B]; }
change = true;
while change do { change = false;

for each block B do {

IN[B] =
⋃

P a predecessor of B

OUT [P];

oldout = OUT [B];

OUT [B] = GEN[B]
⋃

(IN[B]− KILL[B]);

if (OUT [B] 6= oldout) change = true;
}

}

GEN, KILL, IN, and OUT are all represented as bit
vectors with one bit for each definition in the flow graph

Y.N. Srikant Data-Flow Analysis

Reaching Definitions: Bit Vector Representation

Y.N. Srikant Data-Flow Analysis

Available Expression Computation

Sets of expressions constitute the domain of data-flow
values
Forward flow problem
Confluence operator is ∩
An expression x + y is available at a point p, if every path
(not necessarily cycle-free) from the initial node to p
evaluates x + y , and after the last such evaluation, prior to
reaching p, there are no subsequent assignments to x or y
A block kills x + y , if it assigns (or may assign) to x or y
and does not subsequently recompute x + y .
A block generates x + y , if it definitely evaluates x + y , and
does not subsequently redefine x or y

Y.N. Srikant Data-Flow Analysis

Available Expression Computation(2)

Useful for global common sub-expression elimination
4 ∗ i is a CSE in B3, if it is available at the entry point of B3
i.e., if i is not assigned a new value in B2 or 4 ∗ i is
recomputed after i is assigned a new value in B2 (as
shown in the dotted box)

Y.N. Srikant Data-Flow Analysis

Computing e_gen and e_kill

For statements of the form x = a, step 1 below does not
apply
The set of all expressions appearing as the RHS of
assignments in the flow graph is assumed to be available
and is represented using a hash table and a bit vector

Y.N. Srikant Data-Flow Analysis

Introduction to
Machine-Independent Optimizations - 3

Data-Flow Analysis

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Data-Flow Analysis

Outline of the Lecture

What is code optimization? (in part 1)
Illustrations of code optimizations (in part 1)
Examples of data-flow analysis
Fundamentals of control-flow analysis
Algorithms for two machine-independent optimizations
SSA form and optimizations

Y.N. Srikant Data-Flow Analysis

Available Expression Computation

Sets of expressions constitute the domain of data-flow
values
Forward flow problem
Confluence operator is ∩
An expression x + y is available at a point p, if every path
(not necessarily cycle-free) from the initial node to p
evaluates x + y , and after the last such evaluation, prior to
reaching p, there are no subsequent assignments to x or y
A block kills x + y , if it assigns (or may assign) to x or y
and does not subsequently recompute x + y .
A block generates x + y , if it definitely evaluates x + y , and
does not subsequently redefine x or y

Y.N. Srikant Data-Flow Analysis

Available Expression Computation - EGEN and EKILL

Y.N. Srikant Data-Flow Analysis

Available Expression Computation - DF Equations (1)

The data-flow equations

IN[B] =
⋂

P is a predecessor of B

OUT [P], B not initial

OUT [B] = e_gen[B]
⋃

(IN[B]− e_kill[B])

IN[B1] = φ

IN[B] = U, for all B 6= B1 (initialization only)

B1 is the intial or entry block and is special because
nothing is available when the program begins execution
IN[B1] is always φ
U is the universal set of all expressions
Initializing IN[B] to φ for all B 6= B1, is restrictive

Y.N. Srikant Data-Flow Analysis

Available Expression Computation - DF Equations (2)

Y.N. Srikant Data-Flow Analysis

Available Expression Computation - An Example

Y.N. Srikant Data-Flow Analysis

Available Expression Computation - An Example (2)

Y.N. Srikant Data-Flow Analysis

An Iterative Algorithm for Computing Available
Expressions

for each block B 6= B1 do {OUT [B] = U − e_kill[B]; }
/* You could also do IN[B] = U;*/
/* In such a case, you must also interchange the order of */
/* IN[B] and OUT [B] equations below */
change = true;
while change do { change = false;

for each block B 6= B1 do {

IN[B] =
⋂

P a predecessor of B

OUT [P];

oldout = OUT [B];

OUT [B] = e_gen[B]
⋃

(IN[B]− e_kill[B]);

if (OUT [B] 6= oldout) change = true;
}

}
Y.N. Srikant Data-Flow Analysis

Live Variable Analysis

The variable x is live at the point p, if the value of x at p
could be used along some path in the flow graph, starting
at p; otherwise, x is dead at p
Sets of variables constitute the domain of data-flow values
Backward flow problem, with confluence operator

⋃
IN[B] is the set of variables live at the beginning of B
OUT [B] is the set of variables live just after B
DEF [B] is the set of variables definitely assigned values in
B, prior to any use of that variable in B
USE [B] is the set of variables whose values may be used
in B prior to any definition of the variable

OUT [B] =
⋃

S is a successor of B

IN[S]

IN[B] = USE [B]
⋃

(OUT [B]− DEF [B])

IN[B] = φ, for all B (initialization only)

Y.N. Srikant Data-Flow Analysis

Live Variable Analysis: An Example - Pass 1

Y.N. Srikant Data-Flow Analysis

Live Variable Analysis: An Example - Pass 2.1

Y.N. Srikant Data-Flow Analysis

Live Variable Analysis: An Example - Pass 2.2

Y.N. Srikant Data-Flow Analysis

Live Variable Analysis: An Example - Pass 2.3

Y.N. Srikant Data-Flow Analysis

Live Variable Analysis: An Example - Pass 2.4

Y.N. Srikant Data-Flow Analysis

Live Variable Analysis: An Example - Final pass

Y.N. Srikant Data-Flow Analysis

Data-flow Analysis: Theoretical Foundations

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Theoretical Foundations of DFA

Foundations of Data-flow Analysis

Basic questions to be answered
1 In which situations is the iterative DFA algorithm correct?
2 How precise is the solution produced by it?
3 Will the algorithm converge?
4 What is the meaning of a “solution”?

The above questions can be answered accurately by a
DFA framework
Further, reusable components of the DFA algorithm can be
identified once a framework is defined
A DFA framework (D,V ,∧,F) consists of

D : A direction of the dataflow, either forward or backward
V : A domain of values
∧ : A meet operator; (V ,∧) form a semi-lattice
F : A family of transfer functions, V −→ V

F includes constant transfer functions for the
ENTRY/EXIT nodes as well

Y.N. Srikant Theoretical Foundations of DFA

Semi-Lattice

A semi-lattice is a set V and a binary operator ∧, such that
the following properties hold

1 V is closed under ∧
2 ∧ is idempotent (x ∧ x = x), commutative (x ∧ y = y ∧ x),

and associative (x ∧ (y ∧ z) = (x ∧ y) ∧ z)
3 It has a top element, >, such that ∀ x ∈ V , > ∧ x = x
4 It may have a bottom element, ⊥, such that
∀x ∈ V , ⊥ ∧ x = ⊥

The operator ∧ defines a partial order ≤ on V , such that
x ≤ y iff x ∧ y = x

Y.N. Srikant Theoretical Foundations of DFA

Semi-Lattice of Reaching Definitions

3 definitions, {d1,d2,d3}
V is the set of all subsets of {d1,d2,d3}
∧ is ∪
The diagram (next slide) shows the partial order relation
induced by ∧ (i.e., ∪)
Partial order relation is ⊇
An arrow, y → x indicates x ⊇ y (x ≤ y)
Each set in the diagram is a data-flow value
Transitivity is implied in the diagram (a→ b & b → c
imples a→ c)
An ascending chain: (x1 < x2 < ... < xn)

Height of a semi-lattice: largest number of ‘<’ relations in
any ascending chain
Semi-lattices in our DF frameworks will be of finite height

Y.N. Srikant Theoretical Foundations of DFA

Lattice Diagram of Reaching Definitions

y → x indicates x ⊇ y (x ≤ y)

Y.N. Srikant Theoretical Foundations of DFA

Transfer Functions

F : V → V has the following properties
1 F has an identity function, I(x) = x , for all x ∈ V
2 F is closed under composition, i.e., for f ,g ∈ F , f .g ∈ F

Example: Again considering the R-D problem
Assume that each quadruple is in a separate basic block
OUT [B] = GEN[B] ∪ (IN[B]− KILL[B])

In its general form, this becomes f (x) = G ∪ (x − K)

F consists of such functions f , one for each basic block
Identity function exists here (when both G and K (GEN
and KILL) are empty)

Y.N. Srikant Theoretical Foundations of DFA

Reaching Definitions Framework - Example

Y.N. Srikant Theoretical Foundations of DFA

Monotone and Distributive Frameworks

A DF framework (D,F ,V ,∧) is monotone, if
∀x , y ∈ V , f ∈ F , x ≤ y ⇒ f (x) ≤ f (y), OR
f (x ∧ y) ≤ f (x) ∧ f (y)
The reaching definitions framework is monotone
A DF framework is distributive, if
∀x , y ∈ V , f ∈ F , f (x ∧ y) = f (x) ∧ f (y)
Distributivity⇒ monotonicity, but not vice-versa
The reaching definitions lattice is distributive

Y.N. Srikant Theoretical Foundations of DFA

Iterative Algorithm for DFA (forward flow)

{OUT [B1] = vinit ;
for each block B 6= B1 do OUT [B] = >;
while (changes to any OUT occur) do

for each block B 6= B1 do {

IN[B] =
∧

P a predecessor of B

OUT [P];

OUT [B] = fB(IN[B]);

}
}

Y.N. Srikant Theoretical Foundations of DFA

Reaching Definitions Framework - Example contd.

Y.N. Srikant Theoretical Foundations of DFA

Introduction to
Machine-Independent Optimizations - 4

Data-Flow Analysis

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Data-Flow Analysis

Outline of the Lecture

What is code optimization? (in part 1)
Illustrations of code optimizations (in part 1)
Examples of data-flow analysis
Fundamentals of control-flow analysis
Algorithms for two machine-independent optimizations
SSA form and optimizations

Y.N. Srikant Data-Flow Analysis

Foundations of Data-flow Analysis

Basic questions to be answered
1 In which situations is the iterative DFA algorithm correct?
2 How precise is the solution produced by it?
3 Will the algorithm converge?
4 What is the meaning of a “solution”?

A DFA framework (D,V ,∧,F) consists of
D : A direction of the dataflow, either forward or backward
V : A domain of values
∧ : A meet operator; (V ,∧) form a semi-lattice
F : A family of transfer functions, V −→ V

F includes constant transfer functions for the
ENTRY/EXIT nodes as well

Y.N. Srikant Data-Flow Analysis

Properties of the Iterative DFA Algorithm

1 If the iterative algorithm converges, the result is a solution
to the DF equations

2 If the framework is monotone, then the solution found is the
maximum fixpoint (MFP) of the DF equations

An MFP solution is such that in any other solution, values of
IN[B] and OUT [B] are ≤ the corresponding values of the
MFP (i.e., less precise)

3 If the semi-lattice of the framework is monotone and is of
finite height, then the algorithm is guaranteed to converge

Dataflow values decrease with each iteration
Max no. of iterations = height of the lattice × no. of nodes in
the flow graph

Y.N. Srikant Data-Flow Analysis

Meaning of the Ideal Data-flow Solution

Find all possible execution paths from the start node to the
beginning of B
(Assuming forward flow) Compute the data-flow value at
the end of each path (using composition of transfer
functions)
No execution of the program can produce a smaller value
for that program point than

IDEAL[B] =
∧

P, a possible execution path from start node to B

fP(vinit)

Answers greater (in the sense of ≤) than IDEAL are
incorrect (one or more execution paths have been ignored)
Any value smaller than or equal to IDEAL is conservative,
i.e., safe (one or more infeasible paths have been included)
Closer the value to IDEAL, more precise it is

Y.N. Srikant Data-Flow Analysis

Meaning of the Meet-Over-Paths Data-flow Solution

Since finding all execution paths is an undecidable
problem, we approximate this set to include all paths in the
flow graph

MOP[B] =
∧

P, a path from start node to B

fP(vinit)

MOP[B] ≤ IDEAL[B], since we consider a superset of the
set of execution paths

Y.N. Srikant Data-Flow Analysis

Meaning of the Maximum Fixpoint Data-flow Solution

Finding all paths in a flow graph may still be impossible, if it
has cycles
The iterative algorithm does not try this

It visits all basic blocks, not necessarily in execution order
It applies the ∧ operator at each join point in the flow graph
The solution obtained is the Maximum Fixpoint solution
(MFP)

If the framework is distributive, then the MOP and MFP
solutions will be identical
Otherwise, with just monotonicity, MFP ≤ MOP ≤ IDEAL,
and the solution provided by the iterative algorithm is safe

Y.N. Srikant Data-Flow Analysis

Product of Two Lattices and Lattice of Constants

Y.N. Srikant Data-Flow Analysis

The Constant Propagation Framework

The lattice of the DF values in the CP framework is the
product of the semi-lattices of the variables (one lattice for
each variable)
In a product lattice, (a1,b1) ≤ (a2,b2) iff a1 ≤A a2 and
b1 ≤B b2 assuming a1,a2 ∈ A and b1,b2 ∈ B
Each variable v is associated with a map m, and m(v) is
its abstract value (as in the lattice)
Each element of the product lattice has a similar, but
“larger” map m

Thus, m ≤ m′ (in the product lattice), iff for all variables v ,
m(v) ≤ m′(v)

Y.N. Srikant Data-Flow Analysis

Transfer Functions for the CP Framework

Assume one statement per basic block
Transfer functions for basic blocks containing many
statements may be obtained by composition
m(v) is the abstract value of the variable v in a map m.
The set F of the framework contains transfer functions
which accept maps and produce maps as outputs
F contains an identity map
Map for the Start block is m0(v) = UNDEF , for all
variables v
This is reasonable since all variables are undefined before
a program begins

Y.N. Srikant Data-Flow Analysis

Transfer Functions for the CP Framework

Let fs be the transfer function of the statement s
If m′ = fs(m), then fs is defined as follows

1 If s is not an assignment, fs is the identity function
2 If s is an assignment to a variable x , then m′(v) = m(v), for

all v 6= x , and,
(a) If the RHS of s is a constant c, then m′(x) = c
(b) If the RHS is of the form y + z, then

m′(x) = m(y) + m(z), if m(y) and m(z) are constants

= NAC, if either m(y) or m(z) is NAC

= UNDEF , otherwise

(c) If the RHS is any other expression, then m′(x) = NAC

Y.N. Srikant Data-Flow Analysis

Monotonicity of the CP Framework

It must be noted that the transfer function (m′ = fs(m)) always
produces a “lower” or same level value in the CP lattice,
whenever there is a change in inputs

m(y) m(z) m′(x)

UNDEF UNDEF

UNDEF c2 UNDEF

NAC NAC

UNDEF UNDEF

c1 c2 c1 + c2

NAC NAC

UNDEF NAC

NAC c2 NAC

NAC NAC

Y.N. Srikant Data-Flow Analysis

Non-distributivity of the CP Framework

Y.N. Srikant Data-Flow Analysis

Non-distributivity of the CF Framework - Example

If f1, f2, f3 are transfer functions of B1,B2,B3 (resp.), then
f3(f1(m0) ∧ f2(m0)) < f3(f1(m0)) ∧ f3(f2(m0))
as shown in the table, and therefore the CF framework is
non-distributive

m m(x) m(y) m(z)
m0 UNDEF UNDEF UNDEF

f1(m0) 2 3 UNDEF

f2(m0) 3 2 UNDEF

f1(m0) ∧ f2(m0) NAC NAC UNDEF

f3(f1(m0) ∧ f2(m0)) NAC NAC NAC

f3(f1(m0)) 2 3 5
f3(f2(m0)) 3 2 5
f3(f1(m0)) ∧ f3(f2(m0)) NAC NAC 5

Y.N. Srikant Data-Flow Analysis

Introduction to Control-Flow Analysis

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Control-Flow Analysis

Outline of the Lecture

Why control-flow analysis?
Dominators and natural loops
Depth of a control-flow graph

Y.N. Srikant Control-Flow Analysis

Why Control-Flow Analysis?

Control-flow analysis (CFA) helps us to understand the
structure of control-flow graphs (CFG)

To determine the loop structure of CFGs
To compute dominators - useful for code motion
To compute dominance frontiers - useful for the
construction of the static single assignment form (SSA)
To compute control dependence - needed in parallelization

Y.N. Srikant Control-Flow Analysis

Dominators

We say that a node d in a flow graph dominates node n,
written d dom n, if every path from the initial node of the
flow graph to n goes through d
Initial node is the root, and each node dominates only its
descendents in the dominator tree (including itself)
The node x strictly dominates y , if x dominates y and
x 6= y
x is the immediate dominator of y (denoted idom(y)), if x
is the closest strict dominator of y
A dominator tree shows all the immediate dominator
relationships
Principle of the dominator algorithm

If p1,p2, ...,pk , are all the predecessors of n, and d 6= n,
then d dom n, iff d dom pi for each i

Y.N. Srikant Control-Flow Analysis

Dominator Algorithm Principle

Y.N. Srikant Control-Flow Analysis

An Algorithm for finding Dominators

D(n) = OUT [n] for all n in N (the set of nodes in the flow
graph), after the following algorithm terminates
{ /* n0 = initial node; N = set of all nodes; */

OUT [n0] = {n0};
for n in N − {n0} do OUT [n] = N;
while (changes to any OUT [n] or IN[n] occur) do

for n in N − {n0} do

IN[n] =
⋂

P a predecessor of n

OUT [P];

OUT [n] = {n} ∪ IN[n]

}

Y.N. Srikant Control-Flow Analysis

Dominator Example - 1

Y.N. Srikant Control-Flow Analysis

Dominator Example - 2

Y.N. Srikant Control-Flow Analysis

Dominator Example - 3

Y.N. Srikant Control-Flow Analysis

Dominators and Natural Loops

Edges whose heads dominate their tails are called back
edges (a→ b : b = head , a = tail)
Given a back edge n→ d

The natural loop of the edge is d plus the set of nodes that
can reach n without going through d
d is the header of the loop

A single entry point to the loop that dominates all nodes in
the loop
At least one path back to the header exists (so that the loop
can be iterated)

Y.N. Srikant Control-Flow Analysis

Introduction to
Machine-Independent Optimizations - 5

Control-Flow Analysis

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Control-Flow Analysis

Outline of the Lecture

What is code optimization? (in part 1)
Illustrations of code optimizations (in part 1)
Examples of data-flow analysis (in parts 2,3, and 4)
Fundamentals of control-flow analysis
Algorithms for two machine-independent optimizations
SSA form and optimizations

Y.N. Srikant Control-Flow Analysis

Dominators and Natural Loops

Edges whose heads dominate their tails are called back
edges (a→ b : b = head , a = tail)
Given a back edge n→ d

The natural loop of the edge is d plus the set of nodes that
can reach n without going through d
d is the header of the loop

A single entry point to the loop that dominates all nodes in
the loop
At least one path back to the header exists (so that the loop
can be iterated)

Y.N. Srikant Control-Flow Analysis

Algorithm for finding the Natural Loop of a Back Edge

/* The back edge under consideration is n→ d /*
{ stack = empty; loop = {d};

/* This ensures that we do not look at predecessors of d */
insert(n);
while (stack is not empty) do {

pop(m, stack);
for each predecessor p of m do insert(p);

}
}

procedure insert(m) {
if m /∈ loop then {

loop = loop ∪ {m};
push(m, stack);

}
}

Y.N. Srikant Control-Flow Analysis

Dominators, Back Edges, and Natural Loops

Y.N. Srikant Control-Flow Analysis

Dominators, Back Edges, and Natural Loops

Y.N. Srikant Control-Flow Analysis

Depth-First Numbering of Nodes in a CFG

Y.N. Srikant Control-Flow Analysis

Depth-First Numbering Example 1

Y.N. Srikant Control-Flow Analysis

Depth-First Numbering Example 2

Y.N. Srikant Control-Flow Analysis

Inner Loops

Unless two loops have the same header, they are either
disjoint or one is nested within the other
Nesting is checked by testing whether the set of nodes of a
loop A is a subset of the set of nodes of another loop B
Similarly, two loops are disjoint if their sets of nodes are
disjoint
When two loops share a header, neither of these may hold
(see next slide)
In such a case the two loops are combined and
transformed as in the next slide

Y.N. Srikant Control-Flow Analysis

Inner Loops and Loops with the same header

Y.N. Srikant Control-Flow Analysis

Preheader

Y.N. Srikant Control-Flow Analysis

Depth of a Flow Graph and Convergence of DFA

Given a depth-first spanning tree of a CFG, the largest
number of retreating edges on any cycle-free path is the
depth of the CFG
The number of passes needed for convergence of the
solution to a forward DFA problem is (1 + depth of CFG)
One more pass is needed to determine no change, and
hence the bound is actually (2 + depth of CFG)
This bound can be actually met if we traverse the CFG
using the depth-first numbering of the nodes
For a backward DFA, the same bound holds, but we must
consider the reverse of the depth-first numbering of nodes
Any other order will still produce the correct solution, but
the number of passes may be more

Y.N. Srikant Control-Flow Analysis

Depth of a CFG - Example 1

Y.N. Srikant Control-Flow Analysis

Depth of a CFG - Example 2

Y.N. Srikant Control-Flow Analysis

Algorithms for Machine-Independent
Optimizations

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Machine-Independent Optimizations

Outline of the Lecture

Global common sub-expression elimination
Copy propagation
Simple constant propagation
Loop invariant code motion

Y.N. Srikant Machine-Independent Optimizations

Elimination of Global Common Sub-expressions

Needs available expression information
For every s : x := y + z, such that y + z is available at the
beginning of s’ block, and neither y nor z is defined prior to
s in that block, do the following

1 Search backwards from s’ block in the flow graph, and find
first block in which y + z is evaluated. We need not go
through any block that evaluates y + z.

2 Create a new variable u and replace each statement
w := y + z found in the above step by the code segment
{u := y + z;w := u}, and replace s by x := u

3 Repeat 1 and 2 above for every predecessor block of s’
block

Repeated application of GCSE may be needed to catch
“deep” CSE

Y.N. Srikant Machine-Independent Optimizations

GCSE Conceptual Example

Y.N. Srikant Machine-Independent Optimizations

GCSE on Running Example - 1

Y.N. Srikant Machine-Independent Optimizations

GCSE on Running Example - 2

Y.N. Srikant Machine-Independent Optimizations

Copy Propagation

Eliminate copy statements of the form s : x := y , by
substituting y for x in all uses of x reached by this copy
Conditions to be checked

1 u-d chain of use u of x must consist of s only. Then, s is the
only definition of x reaching u

2 On every path from s to u, including paths that go through u
several times (but do not go through s a second time), there
are no assignments to y . This ensures that the copy is valid

The second condition above is checked by using
information obtained by a new data-flow analysis problem

c_gen[B] is the set of all copy statements, s : x := y in B,
such that there are no subsequent assignments to either x
or y within B, after s
c_kill[B] is the set of all copy statements, s : x := y , s not in
B, such that either x or y is assigned a value in B
Let U be the universal set of all copy statements in the
program

Y.N. Srikant Machine-Independent Optimizations

Copy Propagation - The Data-flow Equations

c_in[B] is the set of all copy statements, x := y reaching
the beginning of B along every path such that there are no
assignments to either x or y following the last occurrence
of x := y on the path
c_out [B] is the set of all copy statements, x := y reaching
the end of B along every path such that there are no
assignments to either x or y following the last occurrence
of x := y on the path

c_in[B] =
⋂

P is a predecessor of B

c_out [P], B not initial

c_out [B] = c_gen[B]
⋃

(c_in[B]− c_kill[B])

c_in[B1] = φ, where B1 is the initial block
c_out [B] = U − c_kill[B], for all B 6= B1 (initialization only)

Y.N. Srikant Machine-Independent Optimizations

Algorithm for Copy Propagation

For each copy, s : x := y , do the following
1 Using the du − chain, determine those uses of x that are

reached by s
2 For each use u of x found in (1) above, check that

(i) u-d chain of u consists of s only
This implies that s is the only definition of x that reaches this
block

(ii) s is in c_in[B], where B is the block to which u belongs.
This ensures that no definitions of x or y appear on this path
from s to B

(iii) no definitions x or y occur within B prior to u found in (1)
above

3 If s meets the conditions above, then remove s and replace
all uses of x found in (1) above by y

Y.N. Srikant Machine-Independent Optimizations

Copy Propagation Example 1

Y.N. Srikant Machine-Independent Optimizations

Copy Propagation on Running Example 1.1

Y.N. Srikant Machine-Independent Optimizations

Copy Propagation on Running Example 1.2

Y.N. Srikant Machine-Independent Optimizations

GCSE and Copy Propagation on Running Example 1.1

Y.N. Srikant Machine-Independent Optimizations

GCSE and Copy Propagation on Running Example 1.2

Y.N. Srikant Machine-Independent Optimizations

Simple Constant Propagation

{ Stmtpile = {S|S is a statement in the program}
while Stmtpile is not empty {

S = remove(Stmtpile);
if S is of the form x = c for some constant c

for all statements T in the du-chain of x do
if usage of x in T is reachable only by S

{ substitute c for x in T; simplify T
Stmtpile = Stmtpile ∪ {T}

}
}

Note: If all usages of x are replaced by c, then x = c becomes
dead code and a separate dead code elimination pass will
remove it.

Y.N. Srikant Machine-Independent Optimizations

Simple Constant Propagation Example

Y.N. Srikant Machine-Independent Optimizations

Introduction to
Machine-Independent Optimizations - 6

Machine-Independent Optimization Algorithms

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Optimization Algorithms

Outline of the Lecture

What is code optimization? (in part 1)
Illustrations of code optimizations (in part 1)
Examples of data-flow analysis (in parts 2,3, and 4)
Fundamentals of control-flow analysis (in parts 4 and 5)
Algorithms for machine-independent optimizations
SSA form and optimizations

Y.N. Srikant Optimization Algorithms

Detection of Loop-invariant Computations

Mark as “invariant”, those statements whose operands are all
either constant or have all their reaching definitions outside L

Repeat {
Mark as “invariant” all those statements not previously
so marked all of whose operands are constants, or have all
their reaching definitions outside L, or have exactly
one reaching definition, and that definition is a statement
in L marked “invariant”

} until no new statements are marked “invariant”

Y.N. Srikant Optimization Algorithms

Loop Invariant Code motion Example

Y.N. Srikant Optimization Algorithms

Loop-Invariant Code Motion Algorithm

1 Find loop-invariant statements
2 For each statement s defining x found in step (1), check

that
(a) it is in a block that dominates all exits of L
(b) x is not defined elsewhere in L
(c) all uses in L of x can only be reached by the definition of x

in s
3 Move each statement s found in step (1) and satisfying

conditions of step (2) to a newly created preheader
provided any operands of s that are defined in loop L have
previously had their definition statements moved to the
preheader

Y.N. Srikant Optimization Algorithms

Code Motion - Violation of condition 2(a)-1

Y.N. Srikant Optimization Algorithms

Code Motion - Violation of condition 2(a)-2

Y.N. Srikant Optimization Algorithms

Violation of condition 2(a) - Running Example

Y.N. Srikant Optimization Algorithms

Code Motion - Violation of condition 2(b)

Y.N. Srikant Optimization Algorithms

Violation of condition 2(b) - Running Example

Y.N. Srikant Optimization Algorithms

Code Motion - Violation of condition 2(c)

Y.N. Srikant Optimization Algorithms

Violation of condition 2(c) - Running Example

Y.N. Srikant Optimization Algorithms

The Static Single Assignment Form:
Application to Program Optimizations

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Program Optimizations and the SSA Form

Outline of the Lecture

SSA form - definition and examples
Optimizations with SSA forms

Dead-code elimination
Simple constant propagation
Copy propagation
Conditional constant propagation and constant folding

Y.N. Srikant Program Optimizations and the SSA Form

The SSA Form: Introduction

A new intermediate representation
Incorporates def-use information
Every variable has exactly one definition in the program
text

This does not mean that there are no loops
This is a static single assignment form, and not a dynamic
single assignment form

Some compiler optimizations perform better on SSA forms
Conditional constant propagation and global value
numbering are faster and more effective on SSA forms

A sparse intermediate representation
If a variable has N uses and M definitions, then def-use
chains need space and time proportional to N.M
But, the corresponding instructions of uses and definitions
are only N + M in number
SSA form, for most realistic programs, is linear in the size of
the original program

Y.N. Srikant Program Optimizations and the SSA Form

A Program in non-SSA Form and its SSA Form

Y.N. Srikant Program Optimizations and the SSA Form

SSA Form: A Definition

A program is in SSA form, if each use of a variable is
reached by exactly one definition
Flow of control remains the same as in the non-SSA form
A special merge operator, φ, is used for selection of values
in join nodes
Not every join node needs a φ operator for every variable
No need for a φ operator, if the same definition of the
variable reaches the join node along all incoming edges
Often, an SSA form is augmented with u-d and d-u chains
to facilitate design of faster algorithms
Translation from SSA to machine code introduces copy
operations, which may introduce some inefficiency

Y.N. Srikant Program Optimizations and the SSA Form

Program 2 in non-SSA and SSA Form

Y.N. Srikant Program Optimizations and the SSA Form

Program 3 in non-SSA and SSA Form

Y.N. Srikant Program Optimizations and the SSA Form

Optimization Algorithms with SSA Forms

Dead-code elimination
Very simple, since there is exactly one definition reaching
each use
Examine the du-chain of each variable to see if its use list is
empty
Remove such variables and their definition statements
If a statement such as x = y + z (or x = φ(y1, y2)) is
deleted, care must be taken to remove the deleted
statement from the du-chains of y and z (or y1 and y2)

Simple constant propagation
Copy propagation
Conditional constant propagation and constant folding
Global value numbering

Y.N. Srikant Program Optimizations and the SSA Form

Simple Constant Propagation

{ Stmtpile = {S|S is a statement in the program}
while Stmtpile is not empty {

S = remove(Stmtpile);
if S is of the form x = φ(c, c, ..., c) for some constant c

replace S by x = c
if S is of the form x = c for some constant c

delete S from the program
for all statements T in the du-chain of x do

substitute c for x in T; simplify T
Stmtpile = Stmtpile ∪ {T}

}

Copy propagation is similar to constant propagation
A single-argument φ-function, x = φ(y), or a copy
statement, x = y can be deleted and y substituted for
every use of x

Y.N. Srikant Program Optimizations and the SSA Form

Conditional Constant Propagation - 1

SSA forms along with extra edges corresponding to d-u
information are used here

Edge from every definition to each of its uses in the SSA
form (called henceforth as SSA edges)

Uses both flow graph and SSA edges and maintains two
different work-lists, one for each (Flowpile and SSApile ,
resp.)
Flow graph edges are used to keep track of reachable
code and SSA edges help in propagation of values
Flow graph edges are added to Flowpile, whenever a
branch node is symbolically executed or whenever an
assignment node has a single successor

Y.N. Srikant Program Optimizations and the SSA Form

Conditional Constant Propagation - 2

SSA edges coming out of a node are added to the SSA
work-list whenever there is a change in the value of the
assigned variable at the node
This ensures that all uses of a definition are processed
whenever a definition changes its lattice value.
This algorithm needs much lesser storage compared to its
non-SSA counterpart
Conditional expressions at branch nodes are evaluated
and depending on the value, either one of outgoing edges
(corresponding to true or false) or both edges
(corresponding to ⊥) are added to the worklist
However, at any join node, the meet operation considers
only those predecessors which are marked executable.

Y.N. Srikant Program Optimizations and the SSA Form

CCP Algorithm - Example - 1

Y.N. Srikant Program Optimizations and the SSA Form

CCP Algorithm - Example 1 - Trace 1

Y.N. Srikant Program Optimizations and the SSA Form

CCP Algorithm - Example 1 - Trace 2

Y.N. Srikant Program Optimizations and the SSA Form

CCP Algorithm - Example 1 - Trace 3

Y.N. Srikant Program Optimizations and the SSA Form

CCP Algorithm - Example 2

Y.N. Srikant Program Optimizations and the SSA Form

Introduction to
Machine-Independent Optimizations - 7

Program Optimizations and the SSA Form

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Program Optimizations and the SSA Form

Outline of the Lecture

What is code optimization? (in part 1)
Illustrations of code optimizations (in part 1)
Examples of data-flow analysis (in parts 2,3, and 4)
Fundamentals of control-flow analysis (in parts 4 and 5)
Algorithms for machine-independent optimizations (in part
6)
SSA form and optimizations

Y.N. Srikant Program Optimizations and the SSA Form

SSA Form: A Definition

A program is in SSA form, if each use of a variable is
reached by exactly one definition
Flow of control remains the same as in the non-SSA form
A special merge operator, φ, is used for selection of values
in join nodes
Conditional constant propagation is faster and more
effective on SSA forms

Y.N. Srikant Program Optimizations and the SSA Form

Conditional Constant Propagation - 1

SSA forms along with extra edges corresponding to d-u
information are used here

Edge from every definition to each of its uses in the SSA
form (called henceforth as SSA edges)

Uses both flow graph and SSA edges and maintains two
different work-lists, one for each (Flowpile and SSApile ,
resp.)
Flow graph edges are used to keep track of reachable
code and SSA edges help in propagation of values
Flow graph edges are added to Flowpile, whenever a
branch node is symbolically executed or whenever an
assignment node has a single successor

Y.N. Srikant Program Optimizations and the SSA Form

Conditional Constant Propagation - 2

SSA edges coming out of a node are added to the SSA
work-list whenever there is a change in the value of the
assigned variable at the node
This ensures that all uses of a definition are processed
whenever a definition changes its lattice value.
This algorithm needs much lesser storage compared to its
non-SSA counterpart
Conditional expressions at branch nodes are evaluated
and depending on the value, either one of outgoing edges
(corresponding to true or false) or both edges
(corresponding to ⊥) are added to the worklist
However, at any join node, the meet operation considers
only those predecessors which are marked executable.

Y.N. Srikant Program Optimizations and the SSA Form

CCP Algorithm - Example 2

Y.N. Srikant Program Optimizations and the SSA Form

CCP Algorithm - Example 2 - Trace 1

Y.N. Srikant Program Optimizations and the SSA Form

CCP Algorithm - Example 2 - Trace 2

Y.N. Srikant Program Optimizations and the SSA Form

CCP Algorithm - Example 2 - Trace 3

Y.N. Srikant Program Optimizations and the SSA Form

CCP Algorithm - Example 2 - Trace 4

Y.N. Srikant Program Optimizations and the SSA Form

CCP Algorithm - Example 2 - Trace 5

Y.N. Srikant Program Optimizations and the SSA Form

CCP Algorithm - Example 2 - Trace 6

Y.N. Srikant Program Optimizations and the SSA Form

CCP Algorithm - Example 2 - Trace 7

Y.N. Srikant Program Optimizations and the SSA Form

CCP Algorithm - Example 2 - Trace 8

Y.N. Srikant Program Optimizations and the SSA Form

CCP Algorithm - Example 2 - Trace 9

Y.N. Srikant Program Optimizations and the SSA Form

CCP Algorithm - Example 2 - Trace 10

Y.N. Srikant Program Optimizations and the SSA Form

CCP Algorithm - Example 2 - Trace 11

Y.N. Srikant Program Optimizations and the SSA Form

CCP Algorithm - Example 2 - Trace 12

Y.N. Srikant Program Optimizations and the SSA Form

CCP Algorithm - Example 2 - Trace 13

Y.N. Srikant Program Optimizations and the SSA Form

Instruction Scheduling and
Software Pipelining - 1

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Instruction Scheduling

Outline

Instruction Scheduling
Simple Basic Block Scheduling
Trace, Superblock and Hyperblock scheduling

Software pipelining

Y.N. Srikant Instruction Scheduling

Instruction Scheduling

Reordering of instructions so as to keep the pipelines of
functional units full with no stalls

NP-Complete and needs heuristcs

Applied on basic blocks (local)

Global scheduling requires elongation of basic blocks
(super-blocks)

Y.N. Srikant Instruction Scheduling

Instruction Scheduling - Motivating Example

time: load - 2 cycles, op - 1 cycle
This code has 2 stalls, at i3 and at i5,
due to the loads

i1: r1 load ai2: r2 load bi3: r3 r1 + r2i4: r4 load i5: r5 r3 - r4i6: r6 r3 * r5i7: d st r6(a) Sample Code Sequene

i1 i2 i4

i3

i5

i7

i6

load load load

add

sub

st

mult

(b) DAG
Y.N. Srikant Instruction Scheduling

Scheduled Code - no stalls

There are no stalls, but dependences are indeed satisfied

i1: r1 load ai2: r2 load bi4: r4 load i3: r3 r1 + r2i5: r5 r3 - r4i6: r6 r3 * r5i7: d st r6
Y.N. Srikant Instruction Scheduling

Definitions - Dependences

Consider the following code:
i1 : r1← load(r2)
i2 : r3← r1 + 4
i3 : r1← r4 + r5

The dependences are
i1 δ i2 (flow dependence) i2 δ i3 (anti-dependence)
i1 δo i3 (output dependence)

anti- and ouput dependences can be eliminated by register
renaming

Y.N. Srikant Instruction Scheduling

Dependence DAG

full line: flow dependence, dash line: anti-dependence
dash-dot line: output dependence
some anti- and output dependences are because memory
disambiguation could not be done

i1: t1 load ai2: t2 load bi3: t3 t1 + 4i4: t4 t1 - 2i5: t5 t2 + 3i6: t6 t4 * t2i7: t7 t3 + t6i8: st t7i9: b st t5(a) Instrution Sequene
st

add

mult st

add

ldld

add sub

i1

i3 i4

i7

i8

i6

i2

i5

i9

(b) DAG
Y.N. Srikant Instruction Scheduling

Basic Block Scheduling

Basic block consists of micro-operation sequences (MOS),
which are indivisible

Each MOS has several steps, each requiring resources

Each step of an MOS requires one cycle for execution
Precedence constraints and resource constraints must be
satisfied by the scheduled program

PC’s relate to data dependences and execution delays
RC’s relate to limited availability of shared resources

Y.N. Srikant Instruction Scheduling

The Basic Block Scheduling Problem

Basic block is modelled as a digraph, G = (V ,E)

R: number of resources
Nodes (V): MOS; Edges (E): Precedence
Label on node v

resource usage functions, ρv (i) for each step of the MOS
associated with v
length l(v) of node v

Label on edge e: Execution delay of the MOS, d(e)

Problem: Find the shortest schedule σ : V → N such that
∀e = (u, v) ∈ E , σ(v)− σ(u) ≥ d(e) and

∀i ,
v∈V∑

ρv (i − σ(v)) ≤ R, where
length of the schedule is max

v∈V
{σ(v) + l(v)}

Y.N. Srikant Instruction Scheduling

Instruction Scheduling - Precedence and Resource
Constraints

Y.N. Srikant Instruction Scheduling

A Simple List Scheduling Algorithm

Find the shortest schedule σ : V → N, such that precedence
and resource constraints are satisfied. Holes are filled with
NOPs.

FUNCTION ListSchedule (V,E)
BEGIN

Ready = root nodes of V; Schedule = φ;
WHILE Ready 6= φ DO
BEGIN

v = highest priority node in Ready;
Lb = SatisfyPrecedenceConstraints (v , Schedule, σ);
σ(v) = SatisfyResourceConstraints (v , Schedule, σ, Lb);
Schedule = Schedule + {v};
Ready = Ready − {v} + {u | NOT (u ∈ Schedule)

AND ∀ (w , u) ∈ E , w ∈ Schedule};
END
RETURN σ;

END
Y.N. Srikant Instruction Scheduling

List Scheduling - Ready Queue Update

Y.N. Srikant Instruction Scheduling

Constraint Satisfaction Functions

FUNCTION SatisfyPrecedenceConstraint(v, Sched, σ)
BEGIN

RETURN (max
u∈Sched

σ(u) + d(u, v))

END

FUNCTION SatisfyResourceConstraint(v, Sched, σ, Lb)
BEGIN

FOR i := Lb TO∞ DO

IF ∀0 ≤ j < l(v), ρv (j) +
u∈Sched∑

ρu(i + j − σ(u)) ≤ R THEN
RETURN (i);

END

Y.N. Srikant Instruction Scheduling

Precedence Constraint Satisfaction

Y.N. Srikant Instruction Scheduling

Resource Constraint Satisfaction

Y.N. Srikant Instruction Scheduling

Instruction Scheduling and

Software Pipelining - 2

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Instruction Scheduling

Outline

Instruction Scheduling
Simple Basic Block Scheduling
Trace, Superblock and Hyperblock scheduling

Software pipelining

Y.N. Srikant Instruction Scheduling

Basic Block Scheduling

Basic block consists of micro-operation sequences (MOS),
which are indivisible

Each MOS has several steps, each requiring resources

Each step of an MOS requires one cycle for execution
Precedence constraints and resource constraints must be
satisfied by the scheduled program

PC’s relate to data dependences and execution delays
RC’s relate to limited availability of shared resources

Y.N. Srikant Instruction Scheduling

The Basic Block Scheduling Problem

Basic block is modelled as a digraph, G = (V ,E)

R: number of resources
Nodes (V): MOS; Edges (E): Precedence
Label on node v

resource usage functions, ρv (i) for each step of the MOS
associated with v
length l(v) of node v

Label on edge e: Execution delay of the MOS, d(e)

Problem: Find the shortest schedule σ : V → N such that
∀e = (u, v) ∈ E , σ(v)− σ(u) ≥ d(e) and

∀i ,
v∈V∑

ρv (i − σ(v)) ≤ R, where
length of the schedule is max

v∈V
{σ(v) + l(v)}

Y.N. Srikant Instruction Scheduling

Instruction Scheduling - Precedence and Resource
Constraints

Y.N. Srikant Instruction Scheduling

A Simple List Scheduling Algorithm

Find the shortest schedule σ : V → N, such that precedence
and resource constraints are satisfied. Holes are filled with
NOPs.

FUNCTION ListSchedule (V,E)
BEGIN

Ready = root nodes of V; Schedule = φ;
WHILE Ready 6= φ DO
BEGIN

v = highest priority node in Ready;
Lb = SatisfyPrecedenceConstraints (v , Schedule, σ);
σ(v) = SatisfyResourceConstraints (v , Schedule, σ, Lb);
Schedule = Schedule + {v};
Ready = Ready − {v} + {u | NOT (u ∈ Schedule)

AND ∀ (w , u) ∈ E , w ∈ Schedule};
END
RETURN σ;

END
Y.N. Srikant Instruction Scheduling

List Scheduling - Ready Queue Update

Y.N. Srikant Instruction Scheduling

Constraint Satisfaction Functions

FUNCTION SatisfyPrecedenceConstraint(v, Sched, σ)
BEGIN

RETURN (max
u∈Sched

σ(u) + d(u, v))

END

FUNCTION SatisfyResourceConstraint(v, Sched, σ, Lb)
BEGIN

FOR i := Lb TO∞ DO

IF ∀0 ≤ j < l(v), ρv (j) +
u∈Sched∑

ρu(i + j − σ(u)) ≤ R THEN
RETURN (i);

END

Y.N. Srikant Instruction Scheduling

Precedence Constraint Satisfaction

Y.N. Srikant Instruction Scheduling

Resource Constraint Satisfaction

Y.N. Srikant Instruction Scheduling

List Scheduling - Priority Ordering for Nodes

1 Height of the node in the DAG (i.e., longest path from the
node to a terminal node

2 Estart, and Lstart, the earliest and latest start times
Violating Estart and Lstart may result in pipeline stalls
Estart(v) = max

i=1,··· ,k
(Estart(ui) + d(ui , v))

where u1,u2, · · · ,uk are predecessors of v . Estart value of
the source node is 0.
Lstart(u) = min

i=1,··· ,k
(Lstart(vi)− d(u, vi))

where v1, v2, · · · , vk are successors of u. Lstart value of the
sink node is set as its Estart value.
Estart and Lstart values can be computed using a
top-down and a bottom-up pass, respectively, either
statically (before scheduling begins), or dynamically during
scheduling

Y.N. Srikant Instruction Scheduling

Estart Computation

Y.N. Srikant Instruction Scheduling

Lstart Computation

Y.N. Srikant Instruction Scheduling

List Scheduling - Slack

1 A node with a lower Estart (or Lstart) value has a higher
priority

2 Slack = Lstart − Estart
Nodes with lower slack are given higher priority
Instructions on the critical path may have a slack value of
zero and hence get priority

Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Example - 1

1

3

6

2

4

5

1

0

1

1

2 0

1 2

2

1

1

4

5

1 2

3

node no.path length exec time

LEGEND

latency

path length (n) = exec time (n) , if n is a leaf

 = max { latency (n,m) + path length (m) }
ε m succ (n)

Schedule = {3, 1, 2, 4, 6, 5}

INSTRUCTION SCHEDULING - EXAMPLE

3

Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Example - 2

latencies
add,sub,store: 1 cycle; load: 2 cycles; mult: 3 cycles

path length and slack are shown on the left side and right
side of the pair of numbers in parentheses = (a+4)+(a-2)*b;b = b+3;(a) High-Level Codei1: t1 load ai2: t2 load bi3: t3 t1 + 4i4: t4 t1 - 2i5: t5 t2 + 3i6: t6 t4 * t2i7: t7 t3 + t6i8: st t7i9: b st t5(b) 3-Address Code

ld

sub

mult st

add

st

add

ld

add

5(3, 3)0

6(2, 2)0

8(0, 0)0

3(2, 5)3 1(2, 7)5

7(0, 1)1

0(8, 8)0

2(6, 6)0

1(7, 7)0

i1

i3 i4

i7

i8

i6

i2

i5

i9

() DAG with (Estart, Lstart) Values
Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Example - 2 (contd.)

latencies
add,sub,store: 1 cycle; load: 2 cycles; mult: 3 cycles

2 Integer units and 1 Multiplication unit, all capable of load

and store as well

Heuristic used: height of the node or slack

int1 int2 mult Cycle # Instr.No. Instruction

1 1 0 0 i1, i2 t1 ← load a, t2 ← load b

1 1 0 1

1 1 0 2 i4, i3 t4 ← t1 − 2, t3 ← t1 + 4

1 0 1 3 i6, i5 t5 ← t2 + 3, t6 ← t4 ∗ t2
0 0 1 4 i5 not sched. in cycle 2

0 0 1 5 due to shortage of int units

1 0 0 6 i7 t7 ← t3 + t6
1 0 0 7 i8 c ← st t7
1 0 0 8 i9 b ← st t5

Y.N. Srikant Instruction Scheduling

Resource Usage Models -

Instruction Reservation Table

r0 r1 r2 r3 r4

t0 1 0 1 2 0

t1 1 1 0 0 1

t2 0 0 0 2 1

t3 0 1 0 0 1

No. of resources in the machine: 4

Y.N. Srikant Instruction Scheduling

Resource Usage Models - Global Reservation Table

r0 r1 r2 · · · rM

t0 1 0 1 0
t1 1 1 0 1
t2 0 0 0 1

tT

M: No. of resources in the machine
T: Length of the schedule

Y.N. Srikant Instruction Scheduling

Resource Usage Models - Global Reservation Table

GRT is constructed as the schedule is built (cycle by cycle)

All entries of GRT are initialized to 0

GRT maintains the state of all the resources in the machine

GRTs can answer questions of the type:
“can an instruction of class I be scheduled in the current
cycle (say tk)?”
Answer is obtained by ANDing RT of I with the GRT
starting from row tk

If the resulting table contains only 0’s, then YES, otherwise
NO

The GRT is updated after scheduling the instruction with a
similar OR operation

Y.N. Srikant Instruction Scheduling

Simple List Scheduling - Disadvantages

Checking resource constraints is inefficient here because it
involves repeated ANDing and ORing of bit matrices for
many instructions in each scheduling step

Space overhead may become considerable, but still
manageable

Y.N. Srikant Instruction Scheduling

Global Acyclic Scheduling

Average size of a basic block is quite small (5 to 20
instructions)

Effectiveness of instruction scheduling is limited
This is a serious concern in architectures supporting
greater ILP

VLIW architectures with several function units
superscalar architectures (multiple instruction issue)

Global scheduling is for a set of basic blocks
Overlaps execution of successive basic blocks
Trace scheduling, Superblock scheduling, Hyperblock
scheduling, Software pipelining, etc.

Y.N. Srikant Instruction Scheduling

Trace Scheduling

A Trace is a frequently executed acyclic sequence of basic
blocks in a CFG (part of a path)
Identifying a trace

Identify the most frequently executed basic block
Extend the trace starting from this block, forward and
backward, along most frequently executed edges

Apply list scheduling on the trace (including the branch
instructions)

Execution time for the trace may reduce, but execution time
for the other paths may increase

However, overall performance will improve

Y.N. Srikant Instruction Scheduling

Trace Example

for (i=0; i < 100; i++){ if (A[i℄ == 0)B[i℄ = B[i℄ + s;elseB[i℄ = A[i℄;sum = sum + B[i℄;} (a) High-Level Code

%% r1 0%% r5 0%% r6 400%% r7 sB1: i1: r2 load a(r1)i2: if (r2 != 0) goto i7B2: i3: r3 load b(r1)i4: r4 r3 + r7i5: b(r1) r4i6: goto i9B3: i7: r4 r2i8: b(r1) r2B4: i9: r5 r5 + r4i10: r1 r1 + 4i11: if (r1 < r6) goto i1(b) Assembly Code
B2

B1

B3

B4

main trace() Control Flow Graph
Y.N. Srikant Instruction Scheduling

Trace - Basic Block Schedule

2-way issue architecture with 2 integer units
add, sub, store: 1 cycle, load: 2 cycles, goto: no stall
9 cycles for the main trace and 6 cycles for the off-traceTime Int. Unit 1 Int. Unit 20 i1: r2 load a(r1)12 i2: if (r2 != 0) goto i73 i3: r3 load b(r1)45 i4: r4 r3 + r76 i5: b(r1) r4 i6: goto i93 i7: r4 r2 i8: b(r1) r27 (4) i9: r5 r5 + r4 i10: r1 r1 + 48 (5) i11: if (r1 < r6) goto i1

Y.N. Srikant Instruction Scheduling

Trace Schedule

Y.N. Srikant Instruction Scheduling

Trace Schedule

6 cycles for the main trace and 7 cycles for the off-traceTime Int. Unit 1 Int. Unit 20 i1: r2 load a(r1) i3: r3 load b(r1)12 i2: if (r2 != 0) goto i7 i4: r4 r3 + r73 i5: b(r1) r44 (5) i9: r5 r5 + r4 i10: r1 r1 + 45 (6) i11: if (r1 < r6) goto i13 i7: r4 r2 i8: b(r1) r24 i12: goto i9
Y.N. Srikant Instruction Scheduling

Trace Scheduling - Issues

Side exits and side entrances are ignored during
scheduling of a trace

Required compensation code is inserted during
book-keeping (after scheduling the trace)
Speculative code motion - load instruction moved ahead of
conditional branch

Example: Register r3 should not be live in block B3
(off-trace path)
May cause unwanted exceptions

Requires additional hardware support!

Y.N. Srikant Instruction Scheduling

Compensation Code - Side Exit

Y.N. Srikant Instruction Scheduling

Compensation Code - Side Exit

Y.N. Srikant Instruction Scheduling

Compensation Code - Side Entry

Y.N. Srikant Instruction Scheduling

Compensation Code - Side Entry

Y.N. Srikant Instruction Scheduling

Instruction Scheduling and
Software Pipelining - 3

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Instruction Scheduling

Outline

Instruction Scheduling
Simple Basic Block Scheduling
Trace, Superblock and Hyperblock scheduling

Software pipelining

Y.N. Srikant Instruction Scheduling

Global Acyclic Scheduling

Average size of a basic block is quite small (5 to 20
instructions)

Effectiveness of instruction scheduling is limited
This is a serious concern in architectures supporting
greater ILP

VLIW architectures with several function units
superscalar architectures (multiple instruction issue)

Global scheduling is for a set of basic blocks
Overlaps execution of successive basic blocks
Trace scheduling, Superblock scheduling, Hyperblock
scheduling, Software pipelining, etc.

Y.N. Srikant Instruction Scheduling

Trace Scheduling

A Trace is a frequently executed acyclic sequence of basic
blocks in a CFG (part of a path)
Identifying a trace

Identify the most frequently executed basic block
Extend the trace starting from this block, forward and
backward, along most frequently executed edges

Apply list scheduling on the trace (including the branch
instructions)

Execution time for the trace may reduce, but execution time
for the other paths may increase

However, overall performance will improve

Y.N. Srikant Instruction Scheduling

Superblock Scheduling

A Superblock is a trace without side entrances
Control can enter only from the top
Many exits are possible
Eliminates several book-keeping overheads

Superblock formation
Trace formation as before
Tail duplication to avoid side entrances into a superblock
Code size increases

Y.N. Srikant Instruction Scheduling

Superblock Example

5 cycles for the main trace and 6 cycles for the off-trace

B1

B2

B4

B3

B4’

SuperBlock 1

SuperBlock 2

(a) Control Flow Graph
Time Int. Unit 1 Int. Unit 20 i1: r2 load a(r1) i3: r3 load b(r1)12 i2: if (r2!=0) goto i7 i4: r4 r3 + r73 i5: b(r1) r4 i10: r1 r1 + 44 i9: r5 r5 + r4 i11: if (r1<r6) goto i13 i7: r4 r2 i8: b(r1) r24 i9': r5 r5 + r4 i10': r1 r1 + 45 i11': if (r1<r6) goto i1(b) Superblok Shedule

Y.N. Srikant Instruction Scheduling

Hyperblock Scheduling

Superblock scheduling does not work well with
control-intensive programs which have many control flow
paths

Hyperblock scheduling was proposed to handle such
programs

Here, the control flow graph is IF-converted to eliminate
conditional branches

IF-conversion replaces conditional branches with
appropriate predicated instructions

Now, control dependence is changed to a data
dependence

Y.N. Srikant Instruction Scheduling

IF-Conversion Example

Y.N. Srikant Instruction Scheduling

Hyperblock Example Code

for (i=0; i < 100; i++){ if (A[i℄ == 0)B[i℄ = B[i℄ + s;elseB[i℄ = A[i℄;sum = sum + B[i℄;} (a) High-Level Code

%% r1 0%% r5 0%% r6 400%% r7 sB1: i1: r2 load a(r1)i2: if (r2 != 0) goto i7B2: i3: r3 load b(r1)i4: r4 r3 + r7i5: b(r1) r4i6: goto i9B3: i7: r4 r2i8: b(r1) r2B4: i9: r5 r5 + r4i10: r1 r1 + 4i11: if (r1 < r6) goto i1(b) Assembly Code
B2

B1

B3

B4

main trace() Control Flow Graph
Y.N. Srikant Instruction Scheduling

Hyperblock Example

6 cycles for the entire set of predicated instructions

Instructions i3 and i4 can be executed speculatively and
can be moved up, instead of being scheduled after cycle 2

B2

B1

B3

B4

Hyperblock(a) Control Flow Graph

Time Int. Unit 1 Int. Unit 20 i1: r2 load a(r1) i3: r3 load b(r1)12 i2': p1 (r2 == 0) i4: r4 r3 + r73 i5: b(r1) r4, if p1 i8: b(r1) r2, if !p14 i10: r1 r1 + 4 i7: r4 r2, if !p15 i9: r5 r5 + r4 i11: if (r1<r6) goto i1(b) Hyperblok Shedule

151

Y.N. Srikant Instruction Scheduling

Introduction to Software Pipelining

Overlaps execution of instructions from multiple iterations
of a loop

Executes instructions from different iterations in the same
pipeline, so that pipelines are kept busy without stalls
Objective is to sustain a high initiation rate

Initiation of a subsequent iteration may start even before
the previous iteration is complete

Unrolling loops several times and performing global
scheduling on the unrolled loop

Exploits greater ILP within unrolled iterations
Very little or no overlap across iterations of the loop

Y.N. Srikant Software Pipelining

Introduction to Software Pipelining - contd.

More complex than instruction scheduling

NP-Complete
Involves finding initiation interval for successive iterations

Trial and error procedure
Start with minimum II, schedule the body of the loop using
one of the approaches below and check if schedule length
is within bounds

Stop, if yes
Try next value of II, if no

Requires a modulo reservation table (GRT with II columns
and R rows)

Schedule lengths are dependent on II, dependence
distance between instructions and resource contentions

Y.N. Srikant Software Pipelining

Software Pipelining Example-1

for (i=1; i<=n; i++) {
 a[i+1] = a[i] + 1;
 b[i] = a[i+1]/2;
 c[i] = b[i] + 3;
 d[i] = c[i]
}

(1,1)

(0,1)

(0,1)

(0,1)

4

1

2

3

(dep.dist, delay)

 Iterations

1 S1
2 S2 S1
3 S3 S2 S1
4 S4 S3 S2 S1
5 S4 S3 S2 S1

7 S4 S3 S2 S1
6 S4 S3 S2 S1

8 S4 S3 S2
9 S4 S3
10 S4

T

I

M

E

Y.N. Srikant Software Pipelining

Software Pipelining Example-2.1

No. of tokens present on an arc indicates the dependence
distancefor (i = 0; i < n; i++) fa[i℄ = s * a[i℄;g (a) High-Level Code% t0 0 %% t1 (n-1) %% t2 s %i0: t3 load a(t0)i1: t4 t2 * t3i2: a(t0) t4i3: t0 t0 + 4i4: t1 t1 - 1i5: if (t1 � 0) goto i0(b) Instrution Sequene

i0

i1

i2

add

i3

i4

i5

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

ld

mult

st

sub

bge() Dependene graphSoftware Pipelining Example

152

Y.N. Srikant Software Pipelining

Software Pipelining Example-2.2

Number of tokens present on an arc indicates the
dependence distance

Assume that the possible dependence from i2 to i0 can be
disambiguated

Assume 2 INT units (latency 1 cycle), 2 FP units (latency 2
cycles), and 1 LD/STR unit (latency 2 cycles/1 cycle)

Branch can be executed by INT units

Acyclic schedule takes 5 cycles (see figure)

Corresponds to an initiation rate of 1/5 iteration per cycle

Cyclic schedule takes 2 cycles (see figure)

Y.N. Srikant Software Pipelining

Acyclic and Cyclic Schedules

Y.N. Srikant Instruction Scheduling

Software Pipelining Example-2.3

i1 : mult

i3 : add

i4 : sub

i5 : bge
i2 : st

i0 : ld

i1 : mult

i3 : add

i4 : sub

i5 : bge
i2 : st

i0 : ld

i1 : mult

i3 : add

i4 : sub

i5 : bge
i2 : st

i0 : ld

0

1

2

3

4

5

6

7

8

9

Iter. 1 Iter. 2Iter. 0Time
Step

Prolog

Epilog

Kernel

A Software Pipelined Shedule with II = 2

153

Y.N. Srikant Software Pipelining

Software Pipelining Example-3

3+

0+ 1*

5*

2+

4+

(0,1)

(0,1)

(0,1)

(0,1)

(0,1)

(2,1)

for i = 1 to n {
 0: t0[i] = a[i] + b[i];
 1: t1[i] = c[i] * const1;
 2: t2[i] = d[i] + e[i−2];
 3: t3[i] = t0[i] + c[i];
 4: t4[i] = t1[i] + t2[i];
 5: e[i] = t3[i] * t4[i];
}

Program

0+

0+

0+

1*

1*

1* 2+

2+

2+

3+

3+

3+ 4+

4+

4+

5*

5*

5*

Dependence
 Graph

i = 1

i = 2

i = 3

Loop unrolled to

3+

5* 0+ 1* 2+

PS0 PS1

1

0t
i
m
e

2 multipliers, 2 adders,
1 cluster, single cycle
operations

reveal the
software pipeline

Pipe stages

4+

Y.N. Srikant Software Pipelining

Automatic Parallelization - 1

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Automatic Parallelization

Automatic Parallelization

Automatic conversion of sequential programs to parallel
programs by a compiler
Target may be a vector processor (vectorization), a
multi-core processor (concurrentization), or a cluster of
loosely coupled distributed memory processors
(parallelization)
Parallelism extraction process is normally a
source-to-source transformation
Requires dependence analysis to determine the
dependence between statements
Implementation of available parallelism is also a challenge

For example, can all the iterations of a 2-nested loop be run
in parallel?

Y.N. Srikant Automatic Parallelization

Example 1

for I = 1 to 100 do {
X(I) = X(I) + Y(I)

}

can be converted to

X(1:100) = X(1:100) + Y(1:100)

The above code can be run on a vector processor in O(1) time.
The vectors X and Y are fetched first and then the vector X is
written into

Y.N. Srikant Automatic Parallelization

Example 2

for I = 1 to 100 do {
X(I) = X(I) + Y(I)

}

can be converted to

forall I = 1 to 100 do {
X(I) = X(I) + Y(I)

The above code can be run on a multi-core processor with all
the 100 iterations running as separate threads. Each thread
“owns” a different I value

Y.N. Srikant Automatic Parallelization

Example 3

for I = 1 to 100 do {
X(I+1) = X(I) + Y(I)

}

cannot be converted to

X(2:101) = X(1:100) + Y(1:100)

because of dependence as shown below

X(2) = X(1) + Y(1)
X(3) = X(2) + Y(2)
X(4) = X(3) + Y(3)
...

Y.N. Srikant Automatic Parallelization

Data Dependence Relations

Y.N. Srikant Automatic Parallelization

Data Dependence Direction Vector

Data dependence relations are augmented with a direction
of data dependence (direction vector)
There is one direction vector component for each loop in a
nest of loops
The data dependence direction vector (or direction vector)
is Ψ = (Ψ1,Ψ2, ...,Ψd), where Ψk ∈ {<,=, >,≤,≥, 6=, ∗}
Forward or “<” direction means dependence from iteration i
to i + k (i.e., computed in iteration i and used in iteration
i + k)
Backward or “>” direction means dependence from
iteration i to i − k (i.e., computed in iteration i and used in
iteration i − k). This is not possible in single loops and
possible in two or higher levels of nesting
Equal or “=” direction means that dependence is in the
same iteration (i.e., computed in iteration i and used in
iteration i)

Y.N. Srikant Automatic Parallelization

Direction Vector Example 1

Y.N. Srikant Automatic Parallelization

Automatic Parallelization - 2

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Automatic Parallelization

Data Dependence Relations

Y.N. Srikant Automatic Parallelization

Data Dependence Direction Vector

Data dependence relations are augmented with a direction
of data dependence (direction vector)
There is one direction vector component for each loop in a
nest of loops
The data dependence direction vector (or direction vector)
is Ψ = (Ψ1,Ψ2, ...,Ψd), where Ψk ∈ {<,=, >,≤,≥, 6=, ∗}
Forward or “<” direction means dependence from iteration i
to i + k (i.e., computed in iteration i and used in iteration
i + k)
Backward or “>” direction means dependence from
iteration i to i − k (i.e., computed in iteration i and used in
iteration i − k). This is not possible in single loops and
possible in two or higher levels of nesting
Equal or “=” direction means that dependence is in the
same iteration (i.e., computed in iteration i and used in
iteration i)

Y.N. Srikant Automatic Parallelization

Direction Vector Example 1

Y.N. Srikant Automatic Parallelization

Direction Vector Example 2

Y.N. Srikant Automatic Parallelization

Direction Vector Example 3

Y.N. Srikant Automatic Parallelization

Direction Vector Example 4

Y.N. Srikant Automatic Parallelization

Data Dependence Graph and Vectorization

Individual nodes are statements of the program and edges
depict data dependence among the statements
If the DDG is acyclic, then vectorization of the program is
possible and is straightforward

Vector code generation can be done using a topological
sort order on the DDG

Otherwise, find all the strongly connected components of
the DDG, and reduce the DDG to an acyclic graph by
treating each SCC as a single node

SCCs cannot be fully vectorized; the final code will contain
some sequential loops and possibly some vector code

Y.N. Srikant Automatic Parallelization

Data Dependence Graph and Vectorization

If all the dependence relations in a loop nest have a
direction vector value of “=” for a loop, then the iterations of
that loop can be executed in parallel with no
synchronization between iterations
Any dependence with a forward (<) direction in an outer
loop will be satisfied by the serial execution of the outer
loop
If an outer loop L is run in sequential mode, then all the
dependences with a forward (<) direction at the outer level
(of L) will be automatically satisfied (even those of the
loops inner to L)
However, this is not true for those dependences with with
(=) direction at the outer level; the dependences of the
inner loops will have to be satisfied by appropriate
statement ordering and loop execution order

Y.N. Srikant Automatic Parallelization

Vectorization Example 1

Y.N. Srikant Automatic Parallelization

Vectorization Example 2.1

Y.N. Srikant Automatic Parallelization

Vectorization Example 2.2

Y.N. Srikant Automatic Parallelization

Vectorization Example 2.3

Y.N. Srikant Automatic Parallelization

Vectorization Example 2.4

Y.N. Srikant Automatic Parallelization

Vectorization Example 2.5

Y.N. Srikant Automatic Parallelization

Vectorization Example 2.6

Y.N. Srikant Automatic Parallelization

Concurrentization Examples

Y.N. Srikant Automatic Parallelization

Loop Transformations for increasing Parallelism

Recurrence breaking
Ignorable cycles
Scalar expansion
Scalar renaming
Node splitting
Threshold detection and index set splitting
If-conversion

Loop interchanging
Loop fission
Loop fusion

Y.N. Srikant Automatic Parallelization

Scalar Expansion

Y.N. Srikant Automatic Parallelization

Scalar Expansion is not always profitable

Y.N. Srikant Automatic Parallelization

Scalar Renaming

Y.N. Srikant Automatic Parallelization

If-Conversion

Y.N. Srikant Automatic Parallelization

Loop Interchange

For machines with vector instructions, inner loops are
preferrable for vectorization, and loops can be
interchanged to enable this
For multi-core and multi-processor machines, parallel outer
loops are preferred and loop interchange may help to make
this happen
Requirements for simple loop interchange

1 The loops L1 and L2 must be tightly nested (no statements
between loops)

2 The loop limits of L2 must be invariant in L1
3 There are no statements Sv and Sw (not necessarily

distinct) in L1 with a dependence Sv δ
∗
(<,>) Sw

Y.N. Srikant Automatic Parallelization

Loop Interchange for Vectorizability

Y.N. Srikant Automatic Parallelization

Loop Interchange for parallelizability

Y.N. Srikant Automatic Parallelization

Legal Loop Interchange

Y.N. Srikant Automatic Parallelization

Illegal Loop Interchange

Y.N. Srikant Automatic Parallelization

Legal but not beneficial Loop Interchange

Y.N. Srikant Automatic Parallelization

Loop Fission - Motivation

Y.N. Srikant Automatic Parallelization

Loop Fission: Legal and Illegal

Y.N. Srikant Automatic Parallelization

